A GIS-Based Procedure for Landslide Intensity Evaluation and Specific risk Analysis Supported by Persistent Scatterers Interferometry (PSI)
<p>The work flowchart for the proposed landslide Specific Risk analysis.</p> "> Figure 2
<p>Environmental setting of the Volterra study area: (<b>a</b>) location of the Volterra municipality, sub-basins division and land cover map derived from Corine Land Cover map; and (<b>b</b>) geological map at the scale 1:50,000 from the Italian CARG Project [<a href="#B39-remotesensing-09-01093" class="html-bibr">39</a>]. Background layer is a DEM (Digital Elevation Model) with 20 m cell size extracted from TINITALY/01 DEM Project [<a href="#B40-remotesensing-09-01093" class="html-bibr">40</a>].</p> "> Figure 3
<p>(<b>a</b>) Landslide inventory map and badland inventory maps. Background layer is a DEM (Digital Elevation Model) with 20 m cell size extracted from TINITALY/01 DEM Project [<a href="#B40-remotesensing-09-01093" class="html-bibr">40</a>]. The landslide inventory is derived from [<a href="#B37-remotesensing-09-01093" class="html-bibr">37</a>]; the badland inventory map is provided by Bianchini et al. (2016) [<a href="#B17-remotesensing-09-01093" class="html-bibr">17</a>]. (<b>b</b>) SENTINEL-1 PSI descending data (2014–2017) overlapped on orthophoto taken in 2013 and made available from Tuscany Region authority.</p> "> Figure 4
<p>Susceptibility map after GEOPROGETTI [<a href="#B41-remotesensing-09-01093" class="html-bibr">41</a>]. The pie chart shows number of pixels and related percentage for each Susceptibility class. The box with black line shows the location of close-up area of <a href="#remotesensing-09-01093-f005" class="html-fig">Figure 5</a>.</p> "> Figure 5
<p>Close-up area whose location is shown in <a href="#remotesensing-09-01093-f004" class="html-fig">Figure 4</a>: (<b>Left</b>) location of 12 known landslides overlapped on geological map and one related geological section; and (<b>Right</b>) table of morphometric parameters of known landslides and I Class.</p> "> Figure 6
<p>Distribution of PSI V<sub>SLOPE-ABS</sub> velocities with Intensity value (I value) on known landslides SW Volterra city center.</p> "> Figure 7
<p>Intensity map (I<sub>f</sub>) of ground movements improved with PSI Sentinel-1 data. The pie chart shows number of pixels and related percentage for each Intensity class: The 0% percentages of Intensity classes I3 and I4 actually correspond to decimal values 0.001 and 0.003, respectively.</p> "> Figure 8
<p>Vulnerability map. The pie chart shows number of pixels and related percentage for each Intensity class. The 0% percentages of Intensity classes V3 and V4 actually correspond to decimal values 0.004 and 0.001, respectively.</p> "> Figure 9
<p>The pie chart shows the number of pixels and related percentage for each R<sub>s</sub> class. The 0% percentage of Specific Risk class R4 actually corresponds to a decimal value of 0.001.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Study Area
3.1. Environmental Setting
3.2. LIM
3.3. Radar Data
3.4. Structure and Infrastructure
4. Specific Risk Analysis in the Study Area
4.1. Susceptibility Map
4.2. Intensity Map
- PSI LOS velocities conversion: The LOS velocities of Sentinel-1 PSI data were converted in ground velocities by means of a downslope projection [23,26,50]. In particular, all the PSI average yearly VLOS (mm/year) were projected into the same direction of the steepest slope through a correction factor (C), in order to determine the “real” velocity (not the one measured in the LOS direction, but the one occurring in the landslide direction). The relation between the “real” velocity in the direction of the landslide direction (VSLOPE), the measured velocity in the satellite LOS (VLOS) and the correction factor is given by the equation: VSLOPE = VLOS/C, where the correction factor C depends on the topographic parameters (slope and aspect map of the area) and satellite-dependent parameters (LOS directional cosines) [50]. The VSLOPE values were taken as absolute values (VSLOPE-ABS) and no longer referred to as movements away from/towards the satellite. This procedure allows providing VSLOPE-ABS values with stability thresholds set to 2 mm/year, according to the standard deviation of the PSI population and in agreement with similar choice already tested in scientific literature [22,23,50]. The VSLOPE-ABS conversion allows merging ascending and descending geometries, thus avoiding misinterpretation and underestimation of the motion due to combination of topography and satellite acquisition orbit (i.e., layover and shadowing problems) and obtaining absolute velocity values corresponding to movement rates along the local steepest slope, which is assumed to be the most likely motion direction.
- Correlation of PSI VSLOPE-ABS velocities with Intensity class: The PSI VSLOPE-ABS velocities are exploited for the evaluation of intensity in four different classes: “ND” (not defined), “negligible”, “extremely slow” and “very slow”. These classes are defined according to the velocity scale of Cruden and Varnes [44] and IUGS-WGL [49]: velocity class “very slow” refers to PSI targets with VSLOPE-ABS velocity higher than 16 mm/year; velocity class “extremely slow” refers to PSI targets with VSLOPE-ABS velocity between 2 and 16 mm/year); PSI targets with by VSLOPE-ABS velocity lower than 2 mm/year are classified as “negligible”. “ND” class is for no data, due to the point-wise discrete distribution of PSI data (Figure 6).
- Conversion of PSI VSLOPE-ABS into raster map: The PSI VSLOPE-ABS velocities are converted in raster format with 20 m cell size in a GIS environment.
- Conversion of Preliminary I map into discrete centroids: The preliminary I map is converted to a point-grid of points positioned at the centers of the starting raster map cells (centroids). This last operation allows converging the I value information of the previously raster-converted PSI data to the centroids of the Preliminary I map. Therefore, two I values, the one from I map point-grid and the one from PSI raster, are concurrently present in the attribute table of the preliminary I map centroids.
- Use of MATRIX 1 for final Intensity value If: The final intensity value (If) is chosen according to the contingency matrix shown in Table 3, which consists of cell grids, whose inputs are I values from PSI VSLOPE-ABS and from the preliminary I map, and whose outputs are five Intensity classes. If there is no PSI data (ND case) or if the I obtained from the VSLOPE ABS value of PSI is lower than the one derived from the preliminary I map, then the intensity class of the latter has been maintained as If. If the I value class obtained from the VSLOPE ABS of the PSI data is higher than the preliminary I map class, then the intensity class If has been changed, assigning it the highest value obtained from the PSI data.
- Conversion of centroids with If values into final Intensity map: The centroid points were converted into raster map surface using the new value If as value field of the map with a resolution cell of 20 × 20 m. The final output represents the Intensity map of ground movements over the study area (Figure 7) to be considered for the Specific Risk computation.
4.3. Elements at Risk and Their Vulnerability
4.4. Specific Risk
5. Results
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carrara, A.; Crosta, G.; Frattini, P. Geomorphological and historical data in assessing landslide hazard. Earth Surf. Processes Landf. 2003, 28, 1125–1142. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk-zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Sassa, K.; Fukuoka, H.; Wang, F.; Wang, G. Risk Analysis and Sustainable Disaster Management; Landslides; Springer: Berlin, Germany, 2005. [Google Scholar]
- Pellicani, R.; Van Westen, C.J.; Spilotro, G. Assessing landslide exposure in areas with limited landslide information. Landslides 2014, 11, 463–480. [Google Scholar] [CrossRef]
- Glade, T.; Crozier, M. The nature of landslide hazard impact. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M., Eds.; Wiley: Chichester, UK, 2005; pp. 43–74. [Google Scholar]
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; UNESCO: Paris, France, 1984; pp. 3–63. ISBN 92-3-101895-7. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Cruden, D.M.; Fell, R. Landslide risk assessment. In Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu, HI, USA, 19–21 February 1997; Cruden, F., Ed.; Balkema: Rotterdam, The Netherlands, 1997. [Google Scholar]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, S.R.; Shi, J.S.; Li, B. Qualitative hazard and risk assessment of landslides: A practical framework for a case study in China. Nat. Hazards 2013, 69, 1281–1294. [Google Scholar] [CrossRef]
- Fell, R. Landslide Risk Management Concepts and Guidelines–Australian Geomechanics Society Sub-Committee on Landslide Risk Management; International Union of Geological Sciences: Cardiff, UK, 2000; pp. 51–93. [Google Scholar]
- Lee, E.M.; Jones, D.K. Landslide Risk Assessment; Thomas Telford Ltd.: London, UK, 2004. [Google Scholar]
- Bell, R.; Glade, T. Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Nat. Hazards Earth Syst. Sci. 2004, 4, 117–131. [Google Scholar] [CrossRef]
- Huabin, W.; Gangjun, L.; Weiya, X.; Gonghui, W. GIS-based landslide hazard assessment: An overview. Prog. Phys. Geogr. 2005, 29, 548–567. [Google Scholar] [CrossRef]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Arnaud, A.; Adam, N.; Hanssen, R.; Inglada, J.; Duro, J.; Closa, J.; Eineder, M. ASAR ERS interferometric phase continuity. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium: Learning from Earth’s Shapes and Colours, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Cigna, F.; Del Ventisette, C.; Liguori, V.; Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci. 2011, 11, 865–881. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Tang, J.; Wang, T.; Balz, T.; Zhang, L. Landslide monitoring with high-resolution SAR data in the Three Gorges region. Sci. China Earth Sci. 2012, 55, 590–601. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; Garcí-Davalillo, J.C.; Guerrero, J.; Galve, J.P.; Fernández-Morodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena valley case study (central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ. Earth Sci. 2012, 67, 1155–1172. [Google Scholar] [CrossRef]
- Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote Sens. 2012, 33, 466–489. [Google Scholar] [CrossRef]
- Righini, G.; Pancioli, V.; Casagli, N. Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int. J. Remote Sens. 2012, 33, 2068–2096. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2013, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bardi, F.; Bianchini, S.; Ciampalini, A.; Ventisette, C.; Farina, P.; Ferrigno, F.; Solari, L.; Casagli, N. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards 2017, 1, 327–351. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide susceptibility map refinement using PSInSAR data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Tofani, V. Ricerca e Sperimentazione di Metodologie per la Valutazione del Rischio da Frana a Scala di Bacino. Ph.D. Thesis, University of Florence, Florence, Italy, 2006. [Google Scholar]
- Annoni, A.; Perdigao, V. Technical and Methodological Guide for Updating CORINE Land Cover Database; European Commission, EUR 17288EN; Space Application Institute of Joint Research Centre: Ispra, Italy, 1997. [Google Scholar]
- Giannini, E.; Lazzarotto, A.; Signorini, R. Lineamenti di stratigrafia e di tettonica. In La Toscana Meridionale. Rend. Soc. Ital. Miner. Petrol. 1971, 27, 33–68. [Google Scholar]
- Bianchini, S.; Pratesi, F.; Nolesini, T.; Casagli, N. Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: The Volterra (Italy) case study. Remote Sens. 2015, 7, 4678–4701. [Google Scholar] [CrossRef]
- Pascucci, V.; Merlini, S.; Martini, I.P. Seismic stratigraphy of the Miocene—Pleistocene sedimentary basins of the Northern Tyrrhenian Sea and western Tuscany (Italy). Basin Res. 1999, 11, 337–356. [Google Scholar] [CrossRef]
- Costantini, A.; Lazzarotto, A.; Mazzanti, R.; Mazzei, R.; Salvatorini, G.F.; Sandrelli, F. Note Illustrative della Carta Geologica d’Italia, alla scala 1:50.000, Foglio 285, Volterra. Serv. Geol. Ital. 2002, 285, 152–153. [Google Scholar]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- GEOPROGETTI—Studio Associato Company. Indagini Geognostiche e Sismiche per L’analisi Dell’assetto Geologico e Geomorfologico del Versante Sud di Volterra; Report for the Volterra Municipality; Studio Associato Company: Volterra, Italy, 2010; Available online: http://www.comune.volterra.pi.it (accessed on 28 August 2017).
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric datastacks: SqueeSARTM. IEEE Trans. Geosci. Remote Sens. 2011, 99, 1–11. [Google Scholar]
- Hungr, O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 1995, 32, 610–623. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation: Sp. Rep. 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National research Council, National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Einstein, H.H. Special lecture: Landslide risk assessment procedure. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume 2, pp. 1075–1090. [Google Scholar]
- Cardinali, M.; Reichenbach, P.; Guzzetti, F.; Ardizzone, F.; Antonini, G.; Galli, M.; Salvati, P. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2002, 2, 57–72. [Google Scholar] [CrossRef]
- Hungr, O. Some methods of landslide hazard intensity mapping. In Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu, HI, USA, 19–21 February 1997; pp. 215–226. [Google Scholar]
- Hungr, O. Dynamics of Rock Avalanches and Other Types of Mass Movements. Ph.D. Thesis, University of Albert, Edmonton, AB, Canada, 1981. [Google Scholar]
- IUGS/WGL-International Union of Geological Sciences Working Group on Landslides. A suggested method for describing the rate of movement of a landslide. IAEG Bull. 1995, 52, 75–78. [Google Scholar]
- Bianchini, S.; Herrera, G.; Notti, D.; Mateos, R.M.; Garcia, I.; Mora, O.; Moretti, S. Landslide activity maps generation by means of Persistent Scatterer Interferometry. Remote Sens. 2013, 5, 6198–6222. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Processes Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
Geometry | Ascending | Descending |
---|---|---|
Track angle (°) | 12.14 | 8.05 |
Incidence angle (°) | 36.34 | 40.44 |
Revisiting time (day) | 12 | 12 |
Time span | 12 December 2014–12 May 2017 | 12 October 2014–17 May 2017 |
N° of used SAR images | 77 | 75 |
N° of PSI data | 2786 | 4022 |
Hazard Class | Description |
---|---|
Class H0 | Null/Very Low: geological features and natural processes are not triggering factors for landslide events |
Class H1 | Low: geological features and natural processes determine a low susceptibility to landslide occurrences |
Class H2 | Medium: presence of naturally or o artificially stabilized landslides |
Class H3 | High: presence of dormant landslides and subsidence areas |
Class H4 | Very High: presence of active landslides and active erosional processes |
I Value from PSI Data | |||||
---|---|---|---|---|---|
ND 0 | Negligible 1 | Extremely Slow 2 | Very Slow 3 | ||
I Value from Preliminary I Map | 0 | 0 | 1 | 2 | 3 |
1 | 1 | 1 | 2 | 3 | |
2 | 2 | 2 | 2 | 3 | |
3 | 3 | 3 | 3 | 3 | |
4 | 4 | 4 | 4 | 4 |
Code | Description | V0 (I = I0) | V1 (I = I1) | V2 (I = I2) | V3 (I = I3) | V4 (I = I4) |
---|---|---|---|---|---|---|
A | Public/administrative building | 3 | 5 | 20 | 30 | 60 |
B | Industrial/Commercial building | 3 | 5 | 15 | 30 | 50 |
C | Building under construction | 3 | 5 | 10 | 30 | 40 |
D | Abandoned/Ruined building | 3 | 5 | 10 | 20 | 40 |
E | Power station/Power shed | 3 | 5 | 15 | 20 | 50 |
F | Stable/Barn/Breeding farm | 3 | 5 | 15 | 40 | 60 |
G | Not residential building | 3 | 5 | 30 | 50 | 70 |
H | Residential building | 3 | 5 | 60 | 60 | 80 |
I | Church/Religious complex | 3 | 5 | 15 | 30 | 60 |
L | Campground/Touristic complex | 3 | 5 | 20 | 50 | 80 |
M | Dump/Landfill | 3 | 5 | 10 | 20 | 40 |
N | Croplands | 3 | 5 | 30 | 40 | 70 |
O | Vineyards and olive groves | 3 | 5 | 40 | 50 | 70 |
P | Grassland/pastures | 3 | 5 | 10 | 20 | 40 |
Q | Wood | 3 | 5 | 10 | 20 | 40 |
R | Shrubs/herbaceous | 3 | 5 | 10 | 20 | 30 |
S | Agricultural/Natural areas | 3 | 5 | 30 | 40 | 50 |
T | State highway/Tollroad | 3 | 5 | 30 | 50 | 80 |
U | Provincial highway | 3 | 5 | 40 | 60 | 100 |
V | Provincial/Municipal roads | 3 | 5 | 50 | 80 | 100 |
W | Local roads/Private roads | 3 | 5 | 60 | 80 | 100 |
Z | Railways | 3 | 5 | 60 | 80 | 100 |
Vulnerability Class | ||||||
---|---|---|---|---|---|---|
V0 | V1 | V2 | V3 | V4 | ||
Spatial Hazard Class | H0 | 1 | 1 | 1 | 2 | 2 |
H1 | 1 | 2 | 3 | 3 | 4 | |
H2 | 1 | 3 | 3 | 4 | 4 | |
H3 | 2 | 3 | 4 | 4 | 5 | |
H4 | 2 | 4 | 4 | 5 | 5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Solari, L.; Casagli, N. A GIS-Based Procedure for Landslide Intensity Evaluation and Specific risk Analysis Supported by Persistent Scatterers Interferometry (PSI). Remote Sens. 2017, 9, 1093. https://doi.org/10.3390/rs9111093
Bianchini S, Solari L, Casagli N. A GIS-Based Procedure for Landslide Intensity Evaluation and Specific risk Analysis Supported by Persistent Scatterers Interferometry (PSI). Remote Sensing. 2017; 9(11):1093. https://doi.org/10.3390/rs9111093
Chicago/Turabian StyleBianchini, Silvia, Lorenzo Solari, and Nicola Casagli. 2017. "A GIS-Based Procedure for Landslide Intensity Evaluation and Specific risk Analysis Supported by Persistent Scatterers Interferometry (PSI)" Remote Sensing 9, no. 11: 1093. https://doi.org/10.3390/rs9111093