Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy
"> Figure 1
<p>Smoothing of building rooftop points: (<b>a</b>) original points; (<b>b</b>) segmented points; and (<b>c</b>) smoothed points.</p> "> Figure 2
<p>An example of layer-connection points: (<b>a</b>) yellow points represent the first layer (ground), blue points represent the second layer, and red points represent the third layer; (<b>b</b>) an enlarged view; (<b>c</b>); (<b>d</b>) lines to connect points from two layers; and (<b>e</b>) line to connect points from three layers.</p> "> Figure 3
<p>Example of merging rooftop patches into a layer. (<b>a</b>) Points with different colors represent different rooftop patches; the blue line represents the intersection line between S1 and S2; and (<b>b</b>) red points and blue points represent a roof layer.</p> "> Figure 4
<p>Calculation of layer-connection points, points with different colors representing different roof layers, and the blue rectangle representing the <span class="html-italic">x</span>–<span class="html-italic">y</span> coordinates of the derived layer-connection point: (<b>a</b>) the points inside the five cells belonging to the same roof layer; and (<b>b</b>), (<b>c</b>), (<b>d</b>), (<b>e</b>) the points inside the five cells belonging to different roof layers.</p> "> Figure 5
<p>An example of building model reconstruction: (<b>a</b>) layer-connection points; (<b>b</b>) rooftop construction; and (<b>c</b>) wall construction.</p> "> Figure 6
<p>Experimental Region 1: (<b>a</b>) aerial orthophotos with 0.3 m resolution (no-data areas are shown by yellow boxes); (<b>b</b>) airborne LiDAR data; and(<b>c</b>) no-data areas (black), corresponding the yellow boxes in (<b>a</b>) with letters.</p> "> Figure 7
<p>Experimental Region 2: (<b>a</b>) aerial orthophotos with 0.3 m resolution; and (<b>b</b>) airborne LiDAR data.</p> "> Figure 8
<p>Reconstruction results in Region 1: (<b>a</b>) an overview; (<b>b</b>) a side view of the local reconstructed roof models; and (<b>c</b>) and (<b>d</b>), building roof models for the red box in (<b>b</b>).</p> "> Figure 9
<p>Reconstruction results in Region 2: (<b>a</b>) an overview; (<b>b</b>) a side view of the local reconstructed roof models; and (<b>c</b>) and (<b>d</b>), building roof models for the red box in (<b>b</b>).</p> "> Figure 10
<p>Deviation distances between the reconstructed building roof models and the LiDAR-derived validation data, as represented by points with different colors: (<b>a</b>), (<b>b</b>) Region 1 and Region 2, respectively.</p> "> Figure 11
<p>Evaluation of the building roofs’ deviations under different elevations, where the solid squares in the figures represent the average values of the deviation distances under each elevation range, and the error bars represent the positive and negative deviations of each average value: (<b>a</b>), (<b>b</b>) Region 1 and Region 2, respectively.</p> "> Figure 12
<p>Comparison of Approaches (abbreviated as <span class="html-italic">App.</span>) A, B, and C: (<b>a</b>), (<b>b</b>), and (<b>c</b>) the reconstructed roof models of Buildings 1, 2, and 3, respectively.</p> "> Figure 13
<p>Comparison of Approaches (abbreviated as <span class="html-italic">App.</span>) A, B, and C: (<b>a</b>), (<b>b</b>), and (<b>c</b>) The reconstructed roof models of Buildings 4, 5, and 6, respectively.</p> "> Figure 14
<p>Roughness comparison between Approaches A and B: (<b>a</b>), (<b>c</b>) roughness of roof models reconstructed using Approach A for Buildings 4 and 6; (<b>b</b>), (<b>d</b>) roughness of roof models reconstructed using Approach B for Buildings 4 and 6, respectively. Data are represented by points with different colors.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Extraction of Building Rooftop Points
2.2. Smoothness-Oriented Rooftop Patch Segmentation
2.2.1. Rooftop Patch Segmentation
2.2.2. Smoothness-Oriented Rooftop Patch Optimization
2.3. Generation of Layer-Connection Points
2.3.1. Construction of the 2-D Grid System
2.3.2. Calculation of Layer-Connection Points
2.3.3. Optimization of Layer-Connection Points
2.4. Building Model Reconstruction
2.5. Sensitivity Analysis of the Key Parameters
3. Experiments and Analysis
3.1. Experimental Data
3.2. Experimental Results
3.3. Experimental Analysis
3.3.1. Correctness and Completeness
3.3.2. Deviation Analysis of the Reconstructed Building Roofs
3.3.3. Influence of Elevation to 3-D Roof Reconstruction
3.4. Experimental Discussion
3.4.1. Evaluation from the ISPRS Test Project
3.4.2. Comparison with other Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Groger, G.; Plumer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Qin, R.J. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 179–192. [Google Scholar] [CrossRef]
- Santos, T.; Gomes, N.; Freire, S.; Brito, M.; Santos, L.; Tenedório, J. Applications of solar mapping in the urban environment. Appl. Geogr. 2014, 51, 48–57. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Yue, H.; Chen, W.; Wu, X.; Liu, J. Fast 3D modeling in complex environments using a single Kinect sensor. Opt. Laser Eng. 2014, 53, 104–111. [Google Scholar] [CrossRef]
- Remondino, F.; El-Hakim, S. Image-based 3D modelling: A review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Y.; Wang, Y.; Zhong, L.S.; Chen, Y.M.; Li, M.C. Three-dimensional reconstruction of large multilayer interchange bridge using airborne LiDAR data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 691–708. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Im, J.; Rhee, J.; Hodgson, M. Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landsc. Urban Plan. 2014, 130, 134–148. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L.; Li, M.C.; Chen, Y.M.; Zhong, L.S. Using octrees to detect changes to buildings and trees in the urban environment from airborne LiDAR data. Remote Sens. 2015, 7, 9682–9704. [Google Scholar] [CrossRef]
- Shayeganrad, G. On the remote monitoring of gaseous uranium hexafluoride in the lower atmosphere using LiDAR. Opt. Laser Eng. 2013, 51, 1192–1198. [Google Scholar] [CrossRef]
- Kabolizade, M.; Ebadi, H.; Mohammadzadeh, A. Design and implementation of an algorithm for automatic 3D reconstruction of building models using genetic algorithm. Int. J. Appl. Earth Observ. 2012, 19, 104–114. [Google Scholar] [CrossRef]
- Haala, N.; Kada, M. An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2010, 65, 570–580. [Google Scholar] [CrossRef]
- Tomljenovic, I.; Höfle, B.; Tiede, D.; Blaschke, T. Building extraction from airborne laser scanning data: An analysis of the state of the art. Remote Sens. 2015, 7, 3826–3862. [Google Scholar] [CrossRef]
- Tarsha-Kurdi, F.; Landes, T.; Grussenmeyer, P.; Koehl, M. Model-driven and data-driven approaches using LiDAR data: Analysis and comparison. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Syst. 2007, 36, 87–92. [Google Scholar]
- Awrangjeb, M.; Zhang, C.; Fraser, C.S. Automatic extraction of building roofs using LiDAR data and multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2013, 83, 1–18. [Google Scholar] [CrossRef]
- Dorninger, P.; Pfeifer, N. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 2008, 8, 7323–7343. [Google Scholar] [CrossRef]
- Cheng, L.; Tong, L.H.; Chen, Y.M.; Zhang, W.; Shan, J.; Liu, Y.X.; Li, M.C. Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs. Opt. Laser Eng. 2013, 51, 493–502. [Google Scholar] [CrossRef]
- Susaki, J. Knowledge-based modeling of buildings in dense urban areas by combining airborne LiDAR data and aerial images. Remote Sens. 2013, 5, 5944–5968. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Kumar, R.; Hsu, S. 3D building detection and modeling from aerial LiDAR data. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 2213–2220.
- Sohn, G.; Huang, X.F.; Tao, V. Using a binary space partitioning tree for reconstructing polyhedral building models from airborne LiDAR data. Photogramm. Eng. Remote Sens. 2008, 74, 1425–1438. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, J.H.; Chen, S.C. Automatic construction of building footprint's from airborne LiDAR data. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2523–2533. [Google Scholar] [CrossRef]
- Kada, M.; McKinley, L. 3D building reconstruction from LiDAR based on a cell decomposition approach. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 47–52. [Google Scholar]
- Vallet, B.; Pierrot-Deseilligny, M.; Boldo, D.; Bredif, M. Building footprint database improvement for 3D reconstruction: A split and merge approach and its evaluation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 732–742. [Google Scholar] [CrossRef]
- Vosselman, G.; Dijkman, S. 3D building model reconstruction from point clouds and ground plans. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2001, 34, 37–44. [Google Scholar]
- Sumer, E.; Turker, M. Automated extraction of photorealistic facade textures from single ground-level building images. Int. J. Pattern Recogn. 2014, 28, 1455007. [Google Scholar] [CrossRef]
- Sun, S.H.; Salvaggio, C. Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE J. Sel Top. Appl. Earth Observ. Remote Sens. 2013, 6, 1440–1449. [Google Scholar] [CrossRef]
- Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Henn, A.; Groger, G.; Stroh, V.; Plumer, L. Model driven reconstruction of roofs from sparse LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 76, 17–29. [Google Scholar] [CrossRef]
- Tarsha-Kurdi, F.; Landes, T.; Grussenmeyer, P. Extended RANSAC algorithm for automatic detection of building roof planes from LiDAR data. Photogramm. J. Finl. 2008, 21, 97–109. [Google Scholar]
- Fan, H.C.; Yao, W.; Fu, Q. Segmentation of sloped roofs from airborne LiDAR point clouds using ridge-based hierarchical decomposition. Remote Sens. 2014, 6, 3284–3301. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. Automatic segmentation of raw LiDAR data for extraction of building roofs. Remote Sens. 2014, 6, 3716–3751. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.Q.; Li, J.; Liu, R. Urban building roof segmentation from airborne LiDAR point clouds. Int. J. Remote Sens. 2012, 33, 6497–6515. [Google Scholar] [CrossRef]
- Kim, K.; Shan, J. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 484–497. [Google Scholar] [CrossRef]
- Sampath, A.; Shan, J. Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1554–1567. [Google Scholar] [CrossRef]
- Satari, M.; Samadzadegan, F.; Azizi, A.; Maas, H.G. A multi-resolution hybrid approach for building model reconstruction from LiDAR data. Photogramm. Rec. 2012, 27, 330–359. [Google Scholar] [CrossRef]
- Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Structural approach for building reconstruction from a single DSM. IEEE Trans. Pattern. Anal. 2010, 32, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.Y.; Neumann, U. 2.5D building modeling by discovering global regularities. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 326–333.
- Zhang, W.; Wang, H.; Chen, Y.; Yan, K.; Chen, M. 3D building roof modeling by optimizing primitive’s parameters using constraints from LiDAR data and aerial imagery. Remote Sens. 2014, 6, 8107–8133. [Google Scholar] [CrossRef]
- Xiong, B.; Jancosek, M.; Oude Elberink, S.; Vosselman, G. Flexible building primitives for 3D building modeling. ISPRS J. Photogramm. Remote Sens. 2015, 101, 275–290. [Google Scholar] [CrossRef]
- Chen, Y.M.; Cheng, L.; Li, M.C.; Wang, J.C.; Tong, L.H.; Yang, K. Multiscale grid method for detection and reconstruction of building roofs from airborne LiDAR data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 4081–4094. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, W.; Han, P.; Zhang, W.; Shan, J.; Liu, Y.X.; Li, M.C. Building region derivation from LiDAR data using a reversed iterative mathematic morphological algorithm. Opt. Commun. 2013, 286, 244–250. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Lu, G.; Fraser, C. Automatic building extraction from LiDAR data covering complex urban scenes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 1, 25–32. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Neumann, U. Fast and extensible building modeling from airborne LiDAR data. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA, 5–7 November 2008; pp. 1–8.
- Zhu, L.; Lehtomäki, M.; Hyyppä, J.; Puttonen, E.; Krooks, A.; Hyyppä, H. Automated 3D scene reconstruction from open geospatial data sources: Airborne laser scanning and a 2D topographic database. Remote Sens. 2015, 7, 6710–6740. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LiDAR data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 4184–4198. [Google Scholar] [CrossRef]
- Elberink, S.O.; Vosselman, G. Quality analysis on 3D building models reconstructed from airborne laser scanning data. ISPRS J. Photogramm. Remote Sens. 2011, 66, 157–165. [Google Scholar] [CrossRef]
- Besl, P.J.; Mckay, N.D. A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Sohn, G.; Jung, J.; Gerke, M.; Baillard, C.; Benitez, S.; Breitkopf, U. ISPRS benchmark on urban object classification and 3D building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 1, 293–298. [Google Scholar] [CrossRef]
- Web Site of the ISPRS Test Project on Urban Classification and 3D Building Reconstruction. Available online: http://www2.isprs.org/commissions/comm3/wg4.html (accessed on 28 February 2016).
- Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Rau, J.-Y.; Lin, B.-C. Automatic roof model reconstruction from ALS data and 2D ground planes based on side projection and the TMR algorithm. ISPRS J. Photogramm. Remote Sens. 2011, 66, s13–s27. [Google Scholar] [CrossRef]
- Oude Elberink, S.; Vosselman, G. Building reconstruction by target based graph matching on incomplete laser data: Analysis and limitations. Sensors 2009, 9, 6101–6118. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Oude Elberink, S.; Vosselman, G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 93, 227–242. [Google Scholar] [CrossRef]
Procedure | Threshold | Scale | Setting Basis | |
---|---|---|---|---|
Extraction of building rooftop points | Initial window Iw | The length of the largest building | Data source | |
Fixed step length Lc | 3 m | Empirical | ||
Height difference Th | The minimum building height | Data source | ||
Roughness value Rv | 0.8 m | Empirical | ||
Smoothness-oriented rooftop patch segmentation | Patch segmentation | Search radius Rs | 2–3 times average of point spacing | Empirical |
Patch optimization | Distance threshold Td | 0.5 m | Empirical | |
Number of inner points N | 2 × 2 × point density | Empirical | ||
Probability P | 0.98 | Empirical | ||
Generation of layer-connection points | Construction of the 2-D grid system | Cell size C | 2–3 times average of point spacing | Empirical |
Reconstructed Results | Correct Quantity | Missing Quantity | False Quantity | Completeness (%) | Correctness (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Area (m2) | Number | Area (m2) | Number | Area (m2) | Number | Area | Number | Area | |
Region 1 | 236 | 84,183.25 | 28 | 8695.64 | 7 | 2432.90 | 89.39 | 90.64 | 97.12 | 97.19 |
Region 2 | 1145 | 145,659.82 | 122 | 12,924.63 | 55 | 10,526.89 | 90.37 | 91.85 | 95.42 | 93.26 |
Reconstructed Results | Number of Points | Maximum | Average | Std. Dev. | Skewness | Kurtosis | Percentage of Less Than 0.3 m (%) |
---|---|---|---|---|---|---|---|
Region 1 | 743,502 | 3.53 | 0.05 | 0.18 | 4.78 | 31.47 | 96.61 |
Region 2 | 1,672,006 | 4.15 | 0.12 | 0.25 | 4.28 | 34.92 | 93.28 |
ID | Researcher | Affiliation | Reference |
---|---|---|---|
CKU | J.-Y. Rau | N. Cheng-Kung U., Taiwan | (Rau and Lin, 2011) |
ITCE1 | S. Oude Elberink | ITC, The Netherlands | (Oude Elberink and Vosselman, 2009) |
ITCE2 | S. Oude Elberink | ITC, The Netherlands | (Oude Elberink and Vosselman, 2009) |
ITCX | B. Xiong | ITC, The Netherlands | (Xiong et al., 2014) |
VSK | P. Dorninger | TU Vienna, Austria | (Dorninger and Pfeifer, 2008) |
YOR | G. Sohn | York University, Canada | (Sohn et al., 2008) |
NUC | Y.J. Wang | Nanjing University, China | This paper |
ID | Cmob/Crob [%] | Cm10/Cr10 [%] | N1:M/NN:1/NN:M | RMS [m] | RMSZ [m] |
---|---|---|---|---|---|
Area 1 (288 roof planes) | |||||
CKU | 86.7/98.9 | 86.7/99.3 | 10/36/3 | 0.66 | 0.70 |
ITCE1 | 60.8/94.6 | 58.5/94.0 | 16/26/17 | 0.91 | 0.55 |
ITCE2 | 65.3/97.3 | 63.3/97.3 | 0/38/3 | 0.94 | 0.55 |
ITCX | 76.0/94.5 | 72.9/95.1 | 2/40/2 | 0.84 | 0.53 |
VSK | 72.2/96.7 | 77.7/96.5 | 7/42/6 | 0.79 | 0.65 |
YOR | 88.2/98.5 | 89.9/98.2 | 5/36/14 | 0.75 | 0.58 |
NUC | 73.6/99.2 | 75.5/99.0 | 2/42/3 | 0.92 | 0.45 |
Area 2 (69 roof planes) | |||||
CKU | 78.3/93.1 | 90.0/93.7 | 8/4/0 | 0.85 | 1.02 |
ITCE1 | 79.7/73.7 | 94.0/73.7 | 0/7/0 | 1.11 | 3.33 |
ITCE2 | 79.7/95.0 | 94.0/100.0 | 0/7/0 | 1.16 | 3.31 |
ITCX | 62.3/92.9 | 74.0/92.7 | 2/4/0 | 0.79 | 0.44 |
VSK | 73.9/100.0 | 88.0/100.0 | 3/5/1 | 1.03 | 0.88 |
YOR | 73.9/100.0 | 90.0/100.0 | 5/3/0 | 0.77 | 1.04 |
NUC | 71.0/100.0 | 89.6/100.0 | 3/7/1 | 0.83 | 0.62 |
Area 3 (235 roof planes) | |||||
CKU | 81.3/98.4 | 82.2/98.3 | 4/48/2 | 0.76 | 0.65 |
ITCE1 | 67.7/100.0 | 62.8/100.0 | 0/47/2 | 0.96 | 0.29 |
ITCE2 | 64.3/100.0 | 55.9/100.0 | 0/46/0 | 1.04 | 0.42 |
ITCX | 70.2/100.0 | 62.8/100.0 | 1/48/0 | 0.87 | 0.30 |
VSK | 76.6/99.1 | 74.5/99.1 | 3/50/0 | 0.84 | 0.38 |
YOR | 84.7/100.0 | 89.0/100.0 | 2/51/1 | 0.77 | 0.35 |
NUC | 74.9/100.0 | 85.5/100.0 | 0/49/0 | 0.91 | 0.36 |
Reconstructed Results | Number of Points | Approach A | Approach B | Approach C | |||
---|---|---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | Average | Std. Dev. | ||
Building 1 | 15,163 | 0.02 | 0.11 | 0.03 | 0.13 | 0.28 | 0.56 |
Building 2 | 29,480 | 0.06 | 0.18 | 0.09 | 0.19 | 0.10 | 0.27 |
Building 3 | 23,838 | 0.08 | 0.25 | 0.19 | 0.25 | 0.21 | 0.35 |
Building 4 | 28,151 | 0.14 | 0.22 | 0.17 | 0.23 | 0.15 | 0.29 |
Building 5 | 17,612 | 0.05 | 0.16 | 0.12 | 0.31 | 0.06 | 0.17 |
Building 6 | 18,705 | 0.07 | 0.13 | 0.13 | 0.14 | 0.13 | 0.22 |
Reconstructed Buildings | Number of Rooftop Patches | Approach A | Approach B |
---|---|---|---|
Building 1 | 5 | 0.006 | 0.009 |
Building 2 | 13 | 0.004 | 0.128 |
Building 3 | 14 | 0.004 | 0.237 |
Building 4 | 4 | 0.005 | 0.221 |
Building 5 | 5 | 0.005 | 0.189 |
Building 6 | 3 | 0.002 | 0.171 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, H.; Cheng, L.; Li, M.; Wang, Y.; Xia, N.; Chen, Y.; Tang, Y. Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy. Remote Sens. 2016, 8, 415. https://doi.org/10.3390/rs8050415
Wang Y, Xu H, Cheng L, Li M, Wang Y, Xia N, Chen Y, Tang Y. Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy. Remote Sensing. 2016; 8(5):415. https://doi.org/10.3390/rs8050415
Chicago/Turabian StyleWang, Yongjun, Hao Xu, Liang Cheng, Manchun Li, Yajun Wang, Nan Xia, Yanming Chen, and Yong Tang. 2016. "Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy" Remote Sensing 8, no. 5: 415. https://doi.org/10.3390/rs8050415
APA StyleWang, Y., Xu, H., Cheng, L., Li, M., Wang, Y., Xia, N., Chen, Y., & Tang, Y. (2016). Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy. Remote Sensing, 8(5), 415. https://doi.org/10.3390/rs8050415