Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States
"> Figure 1
<p>Three sample areas for assessing the impact of urbanization in the City of Indianapolis, USA. The vegetation fraction was produced by the Landsat TM image that acquired on 16 June 2001. (<b>a</b>) The whole study area, (<b>b</b>) Area 1 is characterized by conversions from cultivated to residential lands, (<b>c</b>) Area 2 and Area 3 represent changes from forest to commercial, and from open area to commercial respectively.</p> "> Figure 2
<p>The flowchart of the study. The blue polygons with white text are the resultant biophysical parameters that were compared between 2001 and 2006.</p> "> Figure 3
<p>Method to interpolate <math display="inline"><semantics> <mrow><msub><mtext>φ</mtext><mtext>i</mtext></msub></mrow> </semantics></math> for each pixel. <math display="inline"> <semantics> <mrow> <msub> <mtext>φ</mtext> <mtext>i</mtext> </msub> </mrow> </semantics> </math> is the <math display="inline"> <semantics> <mi>φ</mi> </semantics> </math> value for each random pixel in the TVX space. In the similar triangles ABC and ADE, AC/AE = BC/DE. <math display="inline"> <semantics> <mrow> <msub> <mtext>φ</mtext> <mtext>i</mtext> </msub> </mrow> </semantics> </math> can be calculated using the values of <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>T</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>φ</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo> </mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>φ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Land cover, the percentage of impervious surface, scaled vegetation fraction, scaled Land Surface Temperature (LST), soil moisture, and Normalized Difference Water Index (NDWI) [<a href="#B15-remotesensing-07-04880" class="html-bibr">15</a>] in 2001 and 2006, and the percentage of changes of each parameter from 2001 to 2006. Land cover change and percent of imperviousness were acquired from National Land Cover Database (NLCD), while other parameters were generated from this study.</p> "> Figure 5
<p>The characteristics measured by scaled vegetation fraction (Scaled Fr), scaled LST, soil moisture, NDWI and percentage of imperviousness for different land types in three sample areas on 17 June 2001 and 1 July 2006.</p> "> Figure 6
<p>Scatterplot of scaled LST (x axis) <span class="html-italic">versus</span> scaled fractional vegetation cover (y axis) for Landsat TM images that was acquired on 17 June 2001 and 1 July 2006. Compared to the shape of the scatter plot in 2001(<b>upper</b>), 2006 one (<b>lower</b>) became “shorter” and “wider”, which indicated the general trend of the surface condition changed to lower vegetation cover, lower moisture availability, and higher temperature. The scaled LST was transformed from LST by Equation (8) using maximum, minimum, and average LST. The scaled fractional vegetation cover was transformed by the same method.</p> "> Figure 7
<p>(<b>a</b>) Pixel trajectories in the TVX space, (<b>b</b>) Temperature-soil moisture space, and (<b>c</b>) Temperature-NDWI space from 17 June 2001 to 1 July 2006. Cultivated to residential was represented by Area 1, Forest to commercial was represented by Area 1, and open area to commercial was represented by Area 3.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Methodology
2.2.1. Data Collection and Pre-processing
2.2.2. NDVI and Fractional Vegetation Cover Calculation
2.2.3. LST Computation
2.2.4. Soil Moisture Computation
2.2.5. NDWI Calculation
3. Results
3.1. Impact of Urbanization-Associated LULC Changes in Three Selected Areas
Area1 Cultivated to Residential (sample size 3264 pixels) | Area2 Forest to Commercial (sample size 192 pixels) | Area3 Open area to Commercial (sample size 225 pixels) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2006 | 2001 | 2006 | 2001 | 2006 | ||||||||||
mean | std | mean | std | difference | mean | std | mean | std | difference | mean | std | mean | std | difference | |
Scaled Fr | 0.508 | 0.111 | 0.465 | 0.105 | − 0.043 | 0.715 | 0.093 | 0.351 | 0.114 | − 0.364 | 0.549 | 0.083 | 0.291 | 0.052 | − 0.258 |
Scaled LST | 0.370 | 0.048 | 0.418 | 0.058 | 0.101 | 0.316 | 0.041 | 0.581 | 0.054 | 0.265 | 0.404 | 0.057 | 0.632 | 0.044 | 0.228 |
Soil moisture | 0.201 | 0.006 | 0.196 | 0.008 | − 0.005 | 0.209 | 0.005 | 0.173 | 0.008 | − 0.036 | 0.197 | 0.008 | 0.166 | 0.006 | − 0.031 |
NDWI | 0.081 | 0.176 | 0.089 | 0.145 | 0.008 | 0.397 | 0.102 | 0.040 | 0.144 | − 0.357 | 0.139 | 0.118 | -0.038 | 0.075 | − 0.177 |
Imperviousness | 0.090 | 0.181 | 0.216 | 0.240 | 0.126 | 0.067 | 0.164 | 0.561 | 0.373 | 0.494 | 0.081 | 0.138 | 0.633 | 0.337 | 0.552 |
3.2. Land Cover Types and Their Surface Characteristics
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jackson, K.T. Crabgrass Frontier: The Suburbanization of the United States; Oxford Univervisy Press: New York, NY, USA, 1985. [Google Scholar]
- Carlson, T.N.; Arthur, S.T. The impact of land use - land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Global Planet. Change 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. Landscape as a continuum: an examination of the urban landscape structures and dynamics of Indianapolis City, 1991–2000, by using satellite images. Int. J. Remote Sens. 2009, 30, 2547–2577. [Google Scholar] [CrossRef]
- Carlson, T.N. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Sun, D.L.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, L24406. [Google Scholar] [CrossRef]
- Arthur-Hartranft, S.T.; Carlson, T.N.; Clarke, K.C. Satellite and ground-based microclimate and hydrologic analyses coupled with a regional urban growth model. Remote Sens. Environ. 2003, 86, 385–400. [Google Scholar] [CrossRef]
- Goward, S.N. Thermal behavior of urban landscapes and the urban heat island. Physic. Geogr. 1981, 2, 19–33. [Google Scholar]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Seto, K.C.; Rodriguez, R.S.; Fragkias, M. The new geography of contemporary urbanization and the environment. Ann. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res. 2014, 50, 2889–2902. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Johnson, P.E.; Smith, M.O.; Adams, J.B. Simple algorithms for remote determination fro mineral abundances and particles sizes from reflectance spectra. J. Geophys. Res. 1992, 97, 2649–2657. [Google Scholar] [CrossRef]
- Weng, Q.; Hu, X.; Lu, D. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison. Int. J. Remote Sens. 2008, 29, 3209–3232. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.M.; Sanchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.F.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proc. SPIE 2005, 5882. [Google Scholar] [CrossRef]
- Nichol, J.E. A GIS-based approach to microclimate monitoring in singapore’s high-rise housing estates. Photogramm. Eng. Remote Sens. 1994, 60, 1225–1232. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Berg, A.A.; Champagne, C.; Omasa, K. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS J. Photogramm. Remote Sens. 2013, 83, 94–103. [Google Scholar] [CrossRef]
- Wang, K.C.; Li, Z.Q.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Lee, T.J.; Pielke, R.A. Estimating the soil surface specific-humidity. J. Appl. Meteorol. 1993, 32, 480–484. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Fu, P.; Weng, Q. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sens. 2015, 7, 4880-4898. https://doi.org/10.3390/rs70404880
Jiang Y, Fu P, Weng Q. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sensing. 2015; 7(4):4880-4898. https://doi.org/10.3390/rs70404880
Chicago/Turabian StyleJiang, Yitong, Peng Fu, and Qihao Weng. 2015. "Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States" Remote Sensing 7, no. 4: 4880-4898. https://doi.org/10.3390/rs70404880
APA StyleJiang, Y., Fu, P., & Weng, Q. (2015). Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States. Remote Sensing, 7(4), 4880-4898. https://doi.org/10.3390/rs70404880