Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive
<p>Illustration of parameters used in Equations (1) and (2).</p> "> Figure 2
<p>Graphic representation of the unknown diurnal surface temperature at time t (<b>left</b>), and the Zeng empirical correction method (<b>right</b>).</p> "> Figure 3
<p>Example of possible Landsat 8 paths, buoys, and specific scene rows for 19 July 2013; triangles indicate buoy location.</p> "> Figure 4
<p>Selection of specific Landsat scenes and corresponding buoys for a given date using the buoy meteorological database.</p> "> Figure 5
<p>Workflow illustrating: assembling the necessary inputs, Landsat scene filtering, buoy to surface temperature adjustment, and atmospheric compensation.</p> "> Figure 6
<p>Plot of top of atmosphere (ToA) buoy predicted radiance (apparent temperature) <span class="html-italic">vs.</span> satellite observed radiance for Landsat 5 after removal of six cloud contaminated points (mean error −0.52 K ± 0.72 K).</p> "> Figure 7
<p>Plot of ToA buoy predicted radiance<span class="html-italic"> vs.</span> satellite observed radiance for Landsat 7 for all data processed automatically (mean error −0.24 K ± 0.81 K).</p> "> Figure 8
<p>Plot of ToA buoy predicted radiance<span class="html-italic"> vs.</span> satellite observed radiance for Landsat 8 band 10 for all data processed automatically (mean error −0.01 K ± 0.90 K).</p> "> Figure 9
<p>Plot of ToA buoy predicted radiance<span class="html-italic"> vs.</span> satellite observed radiance for Landsat 8 band 11 for all data processed automatically (mean error −0.91 K ± 1.28 K).</p> "> Figure 10
<p>Illustration of regression to calculate transmission and upwelled radiance.</p> "> Figure 11
<p>Histogram of errors for all Landsat 5 scenes in validation data set.</p> "> Figure 12
<p>Histogram of errors for Landsat 5 scenes with possible clouds in the vicinity but not over the buoy.</p> "> Figure 13
<p>Histogram of errors for Landsat 5 scenes without clouds near the buoy.</p> "> Figure 14
<p>Histogram of errors for Landsat 8 band 10 including only cloud free scenes.</p> "> Figure 15
<p>Histogram of errors for Landsat 8 band 11 including only cloud free scenes.</p> ">
Abstract
:1. Introduction and Summary
2. Calibration Methodology
2.1. Sub Surface to Skin Temperature Adjustment
2.2. Use of Radiative Transfer Models to Estimate Top of Atmosphere (ToA) Radiance from Skin Temperature
2.3. Data Sources and Web Access to Data Needed for Operational Calibration
- ○
- The atmospheric profile data is obtained through a PhP script call to NOAA’s ESRL Radiosonde Database [17].
- ○
- The surface weather data is extracted from Weather Underground [18].
- ○
- The buoy data is downloaded from NOAA’s National Data Buoy Center [7].
2.4. Automated Screening of Landsat Data
3. Calibration Results
3.1. Comparison of Operational Results to Current Landsat 5 and Landsat 7 Calibration
3.2. Landsat 8 Results Using Operational Approach
4. Atmospheric Compensation Methodology for LST
4.1. MODTRAN Radiative Transfer Using NARR Database
4.2. Temporal, Elevation, and Spatial Interpolators
4.3. Comparison to Water Surface Temperatures for Cloud Screened Data Set
Category | Description | Number of Scenes | Percent of Scenes |
---|---|---|---|
0 | Cloud Free | 259 | 31.3% |
1 | Cumulus in vicinity | 98 | 11.9% |
2 | Stratus or Cirrus in vicinity | 158 | 19.1% |
3 | Cumulus over buoy | 60 | 7.3% |
4 | Stratus or Cirrus over buoy | 202 | 24.4% |
5 | Totally cloudy image | 50 | 6.0% |
5. Validation of Atmospheric Compensation for LST
Comparison of LST Retrievals to Buoy Derived Surface Temperatures for Landsat 5 and Landsat 8
Cloud Category | Mean Error | Standard Deviation |
---|---|---|
(0,1,2,3,4,5) | −8.47 K | 19.31 K |
(0,1,2) | −0.93 K | 2.46 K |
(0) | −0.27 K | 0.89 K |
Band | Mean Error | Standard Deviation |
---|---|---|
10 | −0.56 K | 0.76 K |
11 | −2.16 K | 1.64 K |
6. Conclusions and Next Steps
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, B.L. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2767–2776. [Google Scholar] [CrossRef]
- Schott, J.R.; Barsi, J.A.; Nordgren, B.L.; Raqueño, N.G.; De Alwis, D. Calibration of Landsat thermal data and application to water resource studies. Remote Sens. Environ. 2001, 78, 108–117. [Google Scholar] [CrossRef]
- Padula, F.P.; Schott, J.R.; Barsi, J.A.; Raqueño, N.G.; Hook, S.J. Calibration of Landsat 5 thermal infrared channel: Updated calibration history and assessment of the errors associated with the methodology. Can. J. Remote Sens. 2011, 36, 617–630. [Google Scholar] [CrossRef]
- Schott, J.R.; Hook, S.J.; Barsi, J.A.; Markham, B.L.; Miller, J.; Padula, F.P.; Raqueño, N.G. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ. 2012, 122, 41–49. [Google Scholar]
- Barsi, J.A.; Markham, B.L.; Schott, J.R.; Hook, S.J.; Raqueño, N.G. Twenty-five years of Landsat thermal band calibration. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2287–2290.
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Markham, B.L. TIRS vicarious radiometric calibration. Remote Sens. 2014. pending online. [Google Scholar]
- National Oceanic and Atmospheric Administration. Available online: http://www.ndbc.noaa.gov/ (accessed on 4 August 2014).
- Berk, A.; Anderson, G.P.; Bernstein, L.S.; Acharya, P.K.; Dothe, H.; Mathew, M.W. MODTRAN4 radiative transfer modeling for atmospheric correction. Proc. SPIE 1999, 3756, 348–353. [Google Scholar]
- Shafran, P. North American Regional Reanalysis. Available online: http://www.emc.ncep.noaa.gov/mmb/rreanl/ (accessed on 20 March 2013).
- Hulley, G.C.; Hughes, C.G.; Hook, S.J. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. J. Geophys. Res. 2012, 117, D23113. [Google Scholar] [CrossRef]
- Hook, S.J.; Vaughan, G.; Tonooka, H.; Schladow, S.G. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the TERRA spacecraft using the Lake Tahoe, CA/NV, USA automated validation site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E.; He, Y. A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical pacific. J. Geophys. Res. 1999, 104, 1525–1536. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Schott, J.R. Remote Sensing: The Image Chain Approach, 2nd ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Padula, F.P.; Schott, J.R. Historic calibration of the thermal infrared band of Landsat-5 TM. PE&RS 2010, 76, 1225–1238. [Google Scholar]
- USGS Earth Explorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 30 October 2014).
- NOAA/ESRL Radiosonde Database. Available online: http://www.esrl.noaa.gov/raobs/ (accessed on 7 November 2014).
- Weather Underground Historical Weather. Available online: http://www.wunderground.com/history/ (accessed on 7 November 2014).
- Schott, J.R.; Raqueno, N.; Montanaro, M.; Ientilucci, E.; Gerace, A.; Lunsford, A.W. Chasing the TIRS ghosts: Calibrating the Landsat 8 thermal bands. Proc. SPIE. 2014. [Google Scholar] [CrossRef]
- Montanaro, M.; Tesfaye, Z.; Lunsford, A.; Wenny, B.; Reuter, D.; Markham, B.; Smith, R.; Thome, K. Preliminary on-orbit performance of the Thermal Infrared Sensor (TIRS) on board Landsat 8. Proc. SPIE. 2013. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proc. SPIE. 2005. [Google Scholar] [CrossRef]
- Rienecker, M.; Gass, J. Merra: Modern-Era Retrospective Analysis for Research and Applications. Available online: http://gmao.gsfc.nasa.gov/research/merra/ (accessed on 20 March 2013).
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference, New York, NY, USA, 27–29 August 1968; pp. 517–524.
- Hulley, G.C.; Hook, S.J. The North American ASTER land surface emissivity database (NAALSED) version 2.0. Remote Sens. Environ. 2009, 113, 1967–1975. [Google Scholar] [CrossRef]
- Masuda, K.; Takashima, T.; Takayama, Y. Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 1988, 24, 313–329. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, M.; Schott, J.R.; Mandel, J.; Raqueno, N. Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sens. 2014, 6, 11244-11266. https://doi.org/10.3390/rs61111244
Cook M, Schott JR, Mandel J, Raqueno N. Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing. 2014; 6(11):11244-11266. https://doi.org/10.3390/rs61111244
Chicago/Turabian StyleCook, Monica, John R. Schott, John Mandel, and Nina Raqueno. 2014. "Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive" Remote Sensing 6, no. 11: 11244-11266. https://doi.org/10.3390/rs61111244
APA StyleCook, M., Schott, J. R., Mandel, J., & Raqueno, N. (2014). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing, 6(11), 11244-11266. https://doi.org/10.3390/rs61111244