Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere
<p>Schematic of the diode laser based DIAL instrument. The Laser transmitter is based on two DBR lasers used to injection seed a TSOA in a MOPA configuration.</p> ">
<p>The beam radius at the optical fiber as a function of range and offset. The fiber radius is 52.5 μm as is shown as the vertical solid black line. Overlap occurs when the beam radius is less than the fiber radius.</p> ">
<p>The maximum ray angle at the optical fiber as a function of range. The fiber numerical aperture requires angles less than 0.22 radians for efficient coupling. The vertical red dashed line indicated the maximum ray angle accepted by the optical fiber.</p> ">
<p>A flow chart summarizing of the data processing.</p> ">
<p>A plot of the normalized relative backscatter as a function of range and time is shown in the upper plot. The corresponding aerosol optical depth at 830 nm measured with a co-located solar radiometer as part of the NASA AERONET program is shown in the bottom plot.</p> ">
<p>The water vapor number density as a function of range and time is shown in the top plot while the number density, relative humidity, and temperature measures at the surface are shown in the bottom three plots. The solid white vertical lines in the top plot indicate radiosonde launches.</p> ">
<p>Plots of the water vapor number density as a function of range for data collect 19 July 2013 at 00:16, 20 July 2013 at 21:55, 20 July 2013 at 12:45, and 25 July 2013 at 11:21, are shown in the <b>top left</b>, <b>top right</b>, <b>bottom left</b>, and <b>bottom right</b> plots, respectively. The dashed red line represents retrieved number density profiles based on the temperature and relative humidity measured by the radiosonde while the solid black line represents the water vapor number density retrieved from the DIAL at the time of the radiosonde launch. The upper left-hand, upper right-hand, lower left-hand, and lower right-hand plots.</p> ">
<p>The upper plot shows the normalized relative backscatter as a function of time and range for 20 July 2013, while the middle figure shows the corresponding water vapor number density as a function of range and time. The bottom figure shows the background count rate as a function of time measured using the last fifty ranges bins. For clear sky operations, the maximum background count rate is less than 2 MHz and water vapor retrievals during daytime operations can be achieved between 4 and 6 km depending on atmospheric conditions.</p> ">
<p>The upper plot shows the normalized relative backscatter as a function of time and range for 24 July 2013, while the middle figure shows the corresponding water vapor number density as a function of range and time. The bottom figure shows the background count rate as a function of time measured using the last fifty ranges bins. Operations during cloudy conditions result in maximum background count rates exceeding 14 MHz and water vapor retrievals during daytime operations can be achieved between 3 and 3.5 km depending on atmospheric conditions.</p> ">
Abstract
:1. Introduction
2. Instrument
2.1. Laser Transmitter
2.2. DIAL Receiver
2.1. Data Collection
3. Observational Data
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Emanuel, K.; Raymond, D.; Betts, A.; Bosart, L.; Bretherton, C.; Droegemeir, K.; Farrell, B.; Fritsch, J.M.; Houze, R.; Lemone, M.A.; et al. Report of the First Prospectus Development Team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Am. Meteor. Soc 1995, 76, 1194–1208. [Google Scholar]
- Dabberdt, W.F.; Schlatter, T.W. Research opportunities from emerging atmospheric observing and modeling capabilities. Bull. Am. Meteor. Soc 1996, 77, 305–323. [Google Scholar]
- Weckwerth, T.M.; Wulfmeyer, V.; Wakimoto, R.M.; Hardesty, R.M.; Wilson, J.W.; Banta, R.M. NCAR-NOAA lower tropospheric water vapor workshop. Bull. Am. Meteor. Soc 1999, 80, 2339–2357. [Google Scholar]
- Carbone, R.E.; Block, J.; Boselly, S.E.; Carmichael, G.R.; Carr, F.H.; Chandrasekar, V.; Gruntfest, E.; Hoff, R.H.; Krajewski, W.F.; LeMone, M.A.; et al. Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks; National Academy Press: Washington, DC, USA, 2009. [Google Scholar]
- Hooff, R.M.; Hardesty, R.M.; Carr, F.; Weckwerth, T.; Koch, S.; Benedetti, A.; Crewell, S.; Cimini, N.; Turner, D.; Feltz, W.; et al. Thermodynamic Profiling Technologies Workshop, Report to the National Science Foundation and the National Weather Service; Hardesty, R.M., Hoff, R.M., Eds.; National Center for Atmospheric Research: Boulder, CO, USA, 2011. [Google Scholar]
- Whiteman, D.N.; Melfi, S.H.; Ferrare, R.A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt 1992, 31, 3068–3082. [Google Scholar]
- Whiteman, D.N.; Rush, K; Rabenhorst, S.; Welch, W; Cadirola, M; McIntire, G; Russo, F.; Adam, M; Venable, D.; Connell, R.; et al. Airborne and ground-based measurements using a high-performance raman lidar. J. Atmos. Oceanic Technol 2010, 27, 1781–1801. [Google Scholar]
- Wandinger, U. Raman Lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Weitkamp, C., Ed.; Springer: Berlin, Germany, 2005; pp. 241–271. [Google Scholar]
- Whiteman, D. Examination of the traditional Raman lidar technique. II: Evaluating the ratios for water vapor and aerosols. Appl. Opt 2003, 42, 2593–2608. [Google Scholar]
- Mattis, I.; Jaenisch, V. Automated Lidar Data Analyzer (ALDA) for RAMSES—The Autonomously Operating German Meteorological Service Raman Lidar for Atmospheric Moisture Sensing. Proceedings of 23rd International Laser Radar Conference, Nara, Japan, 24–28 July 2006; pp. 215–218.
- Leblanc, T.; McDermid, I.S.; Aspey, R.A. First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California. J. Atmos. Ocean. Technol 2008, 25, 1454–1462. [Google Scholar]
- Higdon, N.S.; Browell, E.V.; Ponsardin, P.; Grossmann, B.E.; Butler, C.F.; Chyba, T.H.; Mayo, M.N.; Allen, R.J.; Heuser, A.W.; Grant, W.B.; et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. Appl. Opt 1994, 33, 6422–6438. [Google Scholar]
- Didier, B.; Quaglia, P.; Flamant, C.; Meissonnier, M.; Pelon, J. Airborne Lidar LEANDRE II for Water-Vapor Profiling in the Troposphere. I. System description. Appl. Opt 2001, 40, 3450–3461. [Google Scholar]
- Wirth, M.; Fix, A.; Mahnke, P.; Schwarzer, H.; Schrandt, F.; Ehret, G. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys. B 2009, 96, 201–213. [Google Scholar]
- Machol, J.L.; Ayers, T.; Schwenz, K.T.; Koenig, K.W.; Hardesty, R.M.; Senff, C.J.; Krainak, M.A.; Abshire, J.B.; Bravo, H.E.; Sandberg, S.P. Preliminary measurements with an automated compact differential absorption lidar for profiling water vapor. Appl. Opt 2004, 43, 3110–3121. [Google Scholar]
- Nehrir, A.R.; Repasky, K.S.; Carlsten, J.L.; Obland, M.D.; Shaw, J.A. Water vapor profiling using a widely tunable, amplified diode Laser based differential absorption lidar (DIAL). J. Atmos. Ocean. Technol 2009, 26, 733–745. [Google Scholar]
- Nehrir, A.R. Water Vapor Profiling using a Compact Widely Tunable Diode Laser Differential Absorption Lidar (DIAL). Montana State University, Bozeman, MT, USA, November 2008. [Google Scholar]
- Nehrir, A.R.; Repasky, K.S.; Carlsten, J.L. Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. J. Atmos. Ocean. Technol 2011, 28, 131–147. [Google Scholar]
- Nehrir, A.R. Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP_DIAL) for atmospheric water vapor and aerosol studies, Montana State University, Bozeman, MT, USA, July 2011.
- Nehrir, A.R.; Repasky, K.S.; Carlsten, J.L. Micropulse water-vapor differential absorption lidar: transmitter design and performance. Opt. Express 2012, 20, 25137–25151. [Google Scholar]
- Reagan, J.A.; Cooley, T.W.; Shaw, J.A. Prospects for an Economical, Eye Safe Water Vapor Lidar. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August, 1993; pp. 872–874.
- Reagan, J.A.; Liu, H; McCalmont, J.F. Laser Diode Based New Generation Lidars. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 27–31 May 1996; pp. 1535–1537.
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf 2009, 110, 533–572. [Google Scholar]
- Remsberg, E.E.; Gordley, L.L. Analysis of differential absorption lidar from the Space Shuttle. Appl. Opt 1978, 17, 624–630. [Google Scholar]
- Wulfmeyer, V.; Bosenberg, J. Ground-based differential absorption lidar for water vapor profiling: Assesment of accuracy, resolution, and meteorological applications. Appl. Opt 1998, 37, 3825–3844. [Google Scholar]
- Bosenberg, J. Ground-based differential absorption lidar for water-vapor profiling: Methodology. Appl. Opt 1998, 37, 3845–3860. [Google Scholar]
- Siegman, A.A. Lasers; University Science Books: Sausalito, CA, USA, 1986. [Google Scholar]
- Yariv, A. Quantum Electronics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1975. [Google Scholar]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wulfmeyer, V.; Walther, C. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. overview and theory. Appl. Opt 2001, 40, 5304–5320. [Google Scholar]
Parameter | Measured |
---|---|
Laser Seeder | 2 DBR diode lasers |
Amplifier | Single Stage TSOA |
828.187 nm (on-line) | |
Transmitter Wavelengths | 828.1965–828.2000 nm (side-line) |
828.287 nm (off-line) | |
Pulse Duration | 1 μs |
Pulse Repetition Rate | 10 kHz |
Pulse Energy | 10 μJ |
Short Term Linewidth | <1 MHz (0.023 pm) |
Long Term Bandwidth | ±55 MHz ± (0.125 pm) |
Beam Diameter | 3.8 cm |
Switching Time | 6 s |
Averaging Time | 20 min |
Parameter | Measured |
---|---|
Telescope | Schmidt-Cassegrain |
Primary Mirror Diameter | 35.56 cm |
Full Angle Field of View | 224 μrad |
Detector | Si Photon Counting APD |
APD Quantum Efficiency | 45% |
Optical Filter Bandwidth | 250 pm |
Range Resolution | 150 m |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Repasky, K.S.; Moen, D.; Spuler, S.; Nehrir, A.R.; Carlsten, J.L. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere. Remote Sens. 2013, 5, 6241-6259. https://doi.org/10.3390/rs5126241
Repasky KS, Moen D, Spuler S, Nehrir AR, Carlsten JL. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere. Remote Sensing. 2013; 5(12):6241-6259. https://doi.org/10.3390/rs5126241
Chicago/Turabian StyleRepasky, Kevin S., Drew Moen, Scott Spuler, Amin R. Nehrir, and John L. Carlsten. 2013. "Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere" Remote Sensing 5, no. 12: 6241-6259. https://doi.org/10.3390/rs5126241