Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing
"> Graphical abstract
">
<p>The HyMap imagery of two study sites (RGB = Hyperspectral bands 24, 17, 11). The yellow symbols are <span class="html-italic">in situ</span> sampling locations.</p> ">
<p>Digital image processing flow diagram.</p> ">
<p>The correlation matrices using the vegetation index approach to estimate LAI: using (<b>a</b>) VI1, and (<b>b</b>) VI2 for the Monticello, UT site; and using (<b>c</b>) VI1 and (<b>d</b>) VI2 for the Monument Valley, AZ site.</p> ">
<p>The scatterplots between each of the Red-edge position (REP) and LAI: using (<b>a</b>) LI_REP, (<b>b</b>) LG_REP, and (<b>c</b>) LE_REP for the Monticello, UT site; and using (<b>d</b>) LI_REP, (<b>e</b>) LG_REP, and (<b>f</b>) LE_REP for the Monument Valley, AZ Site. The <span class="html-italic">R<sup>2</sup></span> and RMSEs from calibration (CAL) and cross-validation (CV) are also provided.</p> ">
<p>LAI estimation using the regression tree approach for (<b>a</b>) the Monticello, UT Site, and (<b>b</b>) the Monument Valley, AZ Site. The <span class="html-italic">R<sup>2</sup></span> and RMSEs from calibration (CAL) and cross-validation (CV) are summarized in the plots.</p> ">
<p>The estimated LAI distribution maps for (<b>a</b>) the Monticello site, and (<b>b</b>) the Monument Valley site. The dirt road and other land cover classes were masked out for the Monticello site.</p> ">
<p>The relationships between the matched filter scores and the percent cover of the vegetation species for the Monticello site: (<b>a</b>) sagebrush, (<b>b</b>) rabbitbrush, (<b>c</b>) wheatgrass, and (<b>d</b>) litter.</p> ">
<p>The relationships between the matched filter scores and the percent cover of the vegetation species for the Monument Valley site: (<b>a</b>) greasewood and (<b>b</b>) saltbush.</p> ">
<p>Box plots showing the performance variation of the multiple decision trees using different sets of training and testing samples: (<b>a</b>) for the Monticello Site, and (<b>b</b>) for the Monument Valley Site. MV represents the decision trees using the MTMF-derived metrics and vegetation indices and REF represents the decision trees using the original scaled reflectance data.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Leaf Area Index (LAI) Estimation
3.2. Vegetation Mapping
4. Results and Discussion
4.1. LAI Estimation
4.2. Vegetation Mapping
5. Conclusions
Acknowledgments
References and Notes
- USEPA. National Biennial RCRA Hazardous Waste Report: Based on 2007 Data; USEPA: Washington, DC, USA, 2008; pp. 1–68. [Google Scholar]
- USEPA. Evaluation of Subsurface Engineered Barriers at Waste Sites; EPA 542-R-98-005; USEPA: Washington, DC, USA, 1998; pp. 1–148. [Google Scholar]
- Jensen, J.; Hodgson, M.; Garcia-Quijano, M.; Im, J.; Tullis, J. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sensing 2009, 75, 169–178. [Google Scholar]
- USEPA. Cleaning Up the Nations Waste Sites: Markets and Technology Trends; EPA 042-R-04-015; USEPA: Cincinnati, OH, USA, 2004. [Google Scholar]
- Albright, W.; Benson, C.; Waugh, W. Water Balance Covers for Waste Containment: Principles and Practices; ASCE Press: Reston, VA, USA, 2010. [Google Scholar]
- USEPA. Fact Sheet on Evapotranspiration Cover Systems for Waste Containment; EPA 542-F-11-001; Office of Solid Waste and Emergency Response: Cincinnati, OH, USA, 2011. [Google Scholar]
- USEPA. Introduction to Phytoremediation; EPA/600/R-99/107; Cincinnati, OH, USA, 2000. [Google Scholar]
- Waugh, W.; Miller, D.; Glenn, E.; Moore, D.; Carroll, K.; Bush, R. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site. Proceedings of Waste Management 2010 Symposium, Phoenix, AZ, USA, 10 March 2010.
- Herman, J.; Waites, J.; Ponitz, R.; Etzler, P. A temporal and spatial-resolution remote-sensing study of a Michigan Superfund Site. Photogramm. Eng. Remote Sensing 1994, 60, 1007–1017. [Google Scholar]
- Vincent, R. Remote sensing for solid-waste landfills and hazardous-waste sites. Photogramm. Eng. Remote Sensing 1994, 60, 979–982. [Google Scholar]
- Schuerger, A.; Capelle, G.; Di Benedetto, J.; Mao, C.; Thai, C.; Evans, M.; Richards, J.; Blank, T.; Stryjewski, E. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia grass (Paspalum notatum Flugge.). Remote Sens. Environ 2003, 84, 572–588. [Google Scholar]
- Borzuchowski, J.; Schulz, K. Retrieval of leaf area index (LAI) and soil water content (WC) using hyperspectral remote sensing under controlled glass house conditions for spring barley and sugar beet. Remote Sens 2010, 2, 1702–1721. [Google Scholar]
- Novack, T.; Esch, T.; Kux, H.; Stilla, U. Machine learning comparison between WorldView-2 and QuickBird-2 simulated imagery regarding object-based urban land cover classification. Remote Sens 2011, 3, 2263–2282. [Google Scholar]
- Gong, B.; Im, J.; Jensen, J.; Coleman, M.; Nelson, E. Characterization of forest crops with a range of nutrient and water treatments using AISA hyperspectral imagery. GISci. Remote Sens 2011, in press.. [Google Scholar]
- Thenkabail, P.; Lyon, J.; Huete, A. Hyperspectral Remote Sensing of Vegetation; CRC Press: New York, NY, USA, 2011; p. 781. [Google Scholar]
- Slonecker, T.; Fisher, G.; Aiello, D.; Haack, B. Visible and infrared remote sensing of hazardous waste: a review. Remote Sens 2010, 2, 2474–2508. [Google Scholar]
- Rogan, J.; Franklin, J.; Roberts, D. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ 2002, 80, 143–156. [Google Scholar]
- Tooke, T.; Coops, N.; Goodwin, N.; Voogt, J. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ 2009, 113, 398–407. [Google Scholar]
- Ke, Y.; Quackenbush, L.; Im, J. Synergistic use of QuickBird multispectral imagery and LiDAR data for object-based forest species classification. Remote Sens. Environ 2010, 114, 1141–1154. [Google Scholar]
- Kamal, M.; Phinn, S. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sens 2011, 3, 2222–2242. [Google Scholar]
- Tuanmu, M.; Vina, A.; Bearer, S.; Xu, W.; Quyang, Z.; Zhang, H.; Liu, J. Mapping understory vegetation using phenological characteristics derived from remotely sensed data. Remote Sens. Environ 2010, 114, 1833–1844. [Google Scholar]
- Im, J.; Jensen, J. Hyperspectral remote sensing of vegetation. Geog. Compass 2008, 2, 1943–1961. [Google Scholar]
- Tilling, A.; O’Leary, G.; Ferwerda, J.; Jones, S.; Fitzgerald, G.; Rodriguez, D.; Belford, R. Remote sensing of nitrogen and water stress in wheat. Field Crops Res 2007, 104, 77–85. [Google Scholar]
- Goodenough, D.; Chen, H.; Dyk, A.; Han, T.; Li, J. Multisensor Data Fusion for Aboveground Carbon Estimation. In Proceedings of XXVIII General Assembly of the International Union of Radio Science (URSI), New Delhi, India, 23–29 October 2005; pp. 1–4.
- Hansen, P.; Schjoerring, J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ 2003, 86, 542–553. [Google Scholar]
- Cho, M.; Skidmore, A. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ 2006, 101, 181–193. [Google Scholar]
- Im, J.; Jensen, J.; Coleman, M.; Nelson, E. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int 2009, 24, 293–312. [Google Scholar]
- Maire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Breda, N.; Genet, H.; Davi, H.; Dufrene, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index, and leaf canopy biomass. Remote Sens. Environ 2008, 112, 3846–3864. [Google Scholar]
- Gong, P.; Pu, R.; Heald, R. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens 2002, 23, 1827–1850. [Google Scholar]
- Bacour, C.; Baret, F.; Beal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxC(ab), from top of canopy MERIS reflectance data: principles and validation. Remote Sens. Environ 2006, 105, 313–325. [Google Scholar]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ 2003, 84, 1–15. [Google Scholar]
- Waugh, W.; Benson, C.; Albright, W. Sustainable Covers for Uranium Mill Tailings, USA: Alternative Design, Performance, and Renovation. Proceedings of 12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, UK, 11–15 October 2009; pp. 639–648.
- Stormont, J.; Morris, C. Method to estimate water storage capacity of capillary barriers. J. Geotech. Geoenviron Eng 1998, 124, 297–302. [Google Scholar]
- McKeon, C.; Glenn, E.; Waugh, J.; Eastoe, C.; Jordan, F.; Nelson, S. Growth and water and nitrate uptake patterns of grazed and ungrazed desert shrubs growing over a nitrate contamination plume. J. Arid Environ 2006, 61, 119–136. [Google Scholar]
- Jordan, F.; Waugh, J.; Glenn, E.; Sam, L.; Tompson, T.; Tompson, T.L. Natural bioremediation of a nitrate-contaminated soil-and-aquifer system in a desert environment. J. Arid Environ 2008, 72, 748–763. [Google Scholar]
- Glenn, E.; Morino, K.; Didan, K.; Jordan, F.; Carroll, K.; Nagler, P.; Hultine, K.; Sheader, L.; Waugh, J. Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 2009, 1, 316–329. [Google Scholar]
- HyVista. HyMap Data Product. 2011. Available online: http://www.hyvista.com/wp_11/wp-content/uploads/2011/02/hvc_data_products.pdf (accessed on 10 September 2011).
- Jensen, J. Introductory Digital Image Processing; Prentice-Hall: Upper Saddle River, NJ, USA, 2005; p. 526. [Google Scholar]
- Horler, D.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens 1983, 4, 273–288. [Google Scholar]
- Pinar, A.; Curran, P. Grass chlorophyll and the reflectance red edge. Int. J. Remote Sens 1996, 17, 351–357. [Google Scholar]
- Smith, K.; Steven, M.; Colls, J. Use of hyperspectral derivative ratios in the red edge region to identify plant stress responses to gas leak. Remote Sens. Environ 2004, 92, 207–217. [Google Scholar]
- Guyot, G.; Baret, F. Utilisation de la haute résolution spectrale pour suivre l'état des couverts végétaux. Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, Assois, France, 18–22 January 1988; ESA SP-287. pp. 279–286.
- Dawson, T.; Curran, P. A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens 1998, 19, 2133–2139. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar]
- Huang, C.; Townshend, J. A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover. Int. J. Remote Sens 2003, 24, 75–90. [Google Scholar]
- Moisen, G.; Freeman, E.; Blackard, J.; Frescino, T.; Zimmermann, N.; Edwards, T. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol. Model 2006, 199, 176–187. [Google Scholar]
- Li, R.; Belford, G. Instability of Decision Tree Classification Algorithms. Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 570–575.
- Im, J.; Jensen, J. A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sens. Environ 2005, 99, 326–340. [Google Scholar]
- Im, J.; Jensen, J.; Hodgson, M. Object-based classification using high posting density lidar data. GISci. Remote Sens 2008, 45, 209–228. [Google Scholar]
- Im, J.; Jensen, J.; Tullis, J. Object-based change detection using correlation image analysis and image segmentation techniques. Int. J. Remote Sens 2008, 29, 399–423. [Google Scholar]
- Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L. Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sens. Environ 2011, in press.. [Google Scholar]
- Lu, Z.; Im, J.; Quackenbush, L.; Halligan, K. Population estimation based on multi-sensor data fusion. Int. J. Remote Sens 2010, 31, 5587–5604. [Google Scholar]
- Williams, A.; Hunt, E. Estimation of leafy Spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens. Environ 2002, 82, 446–456. [Google Scholar]
- Boardman, J.; Kruse, F.; Green, R. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries of the Fifth JPL Airborne Geoscience Workshop; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 1995; JPL Publication; Volume 95-1, pp. 23–26. [Google Scholar]
- Andrew, M.; Ustin, S. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens. Environ 2008, 112, 4301–4317. [Google Scholar]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150. [Google Scholar]
- Fuentes, D.; Gamon, J.; Qiu, H.; Sims, D.; Roberts, D. Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor. J. Geophys. Res 2001, 106, 33565–33577. [Google Scholar]
- Gamon, J.; Peñuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ 1992, 41, 35–44. [Google Scholar]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266. [Google Scholar]
- Peñuelas, J.; Piñol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens 1997, 18, 2869–2875. [Google Scholar]
- Serrano, L.; Peñuelas, J.; Ustin, S. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ 2002, 81, 355–364. [Google Scholar]
- Nagler, P.; Daughtry, C.; Goward, S. Plant litter and soil reflectance. Remote Sens. Environ 2000, 71, 207–215. [Google Scholar]
- DeFries, R.; Chan, J. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ 2000, 74, 503–515. [Google Scholar]
- Briem, G.; Benediktsson, J.; Sveinsson, J. Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote Sens 2002, 40, 2291–2299. [Google Scholar]
- Leverington, D.; Moon, W. On the use of consensus algorithms to address variability in the results of neural network classifications: Preliminary tests involving two northern study areas. Can. J. Remote Sens 2005, 31, 269–273. [Google Scholar]
- Carreiras, J.; Pereira, M.; Shimabukuro, Y. Land-cover mapping in the Brazilian Amazon using SPOT-4 vegetation data and machine learning classification methods. Photogramm. Eng. Remote Sensing 2006, 72, 897–910. [Google Scholar]
- Curran, P. Remote sensing of foliar chemistry. Remote Sens. Environ 1989, 30, 271–278. [Google Scholar]
- Elvidge, C.; Lyon, R. Influence of rock-soil spectral variation on the assessment of green biomass. Remote Sens. Environ 1985, 17, 265–269. [Google Scholar]
- Huete, A.; Jackson, R.; Post, D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ 1985, 17, 37–53. [Google Scholar]
- Gey, S.; Poggi, J. Boosting and instability for regression trees. Comput. Stat. Data An 2006, 50, 533–550. [Google Scholar]
- Glenn, E.; Morino, K.; Didan, K.; Jordan, F.; Carroll, K.; Nagler, P.; Hultine, K.; Sheader, L.; Waugh, J. Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 2008, 1, 316–329. [Google Scholar]
- Vogelmann, J.; Rock, B.; Moss, D. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens 1993, 14, 1563–1595. [Google Scholar]
- Glenn, N.; Mundt, J.; Weber, K.; Prather, T.; Lass, L.; Pettingill, J. Hyperspectral data processing for repeat detection of small infestations of leafy spurge. Remote Sens. Environ 2005, 95, 399–412. [Google Scholar]
- Jensen, J.; Garcia-Quijano, M.; Hadley, B.; Im, J.; Wang, Z.; Nel, A.; Teixeira, E.; Davis, B. Remote sensing agricultural crop type for sustainable development in South Africa. Geocarto Int 2006, 21, 5–18. [Google Scholar]
- Underwood, E.; Ustin, S.; Ramirez, C. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environ. Manage 2007, 39, 63–83. [Google Scholar]
Monticello Site | Monument Valley Site | |
---|---|---|
Strata (classes)* | Big sagebrush (n = 8) Rubber rabbitbrush (n = 12) Western wheatgrass (n = 16) Litter (dead plant materials; mostly grass species) (n = 17) | Black greasewood (n = 12; percent cover available for 8 out of 12) Fourwing saltbush (n = 14; percent cover available for 9 out of 14) Soil (n = 17) |
LAI range | 0.09–5.1 (n = 54)** | 0.95–6.26 (n = 19)*** |
Index | Equation | Reference |
---|---|---|
Simple ratio (SR) | Tucker [56] | |
Normalized difference vegetation index (NDVI) | Tucker [56] | |
Modified NDVI (MNDVI) | Fuentes et al. [57] | |
Photochemical reflectance index (PRI) | Gamon et al. [58] | |
Normalized difference water index (NDWI) | Gao [59] | |
Water band index (WBI) | Penuelas et al. [60] | |
Normalized difference nitrogen index (NDNI) | Serrano et al. [61] | |
Normalized difference lignin index (NDLI) | Serrano et al. [61] | |
Cellulose absorption index (CAI) | Nagler et al. [62] | |
(VI1) for the Monticello site | From this study | |
(VI2) for the Monticello site | From this study | |
(VI1) for the Monument Valley site | From this study | |
(VI2) for the Monument Valley site | From this study |
Site | Vegetation Index | Band 1 (nm) | Band 2 (nm) | R2 | RMSE |
---|---|---|---|---|---|
Monticello | VI1 | 1,583.8 | 1,746.6 | 0.343(0.344) | 0.90/0.93* |
VI2 | 1,583.8 | 1,746.6 | 0.341(0.342) | 0.90/0.93 | |
Monument Valley | VI1 | 1,187.8 | 1,329.5 | 0.495(0.501) | 0.85(0.84)/1.03(1.02) |
VI2 | 1,187.8 | 1,329.5 | 0.501(0.528) | 0.84(0.82)/1.03(1.01) |
(a) | ||||
---|---|---|---|---|
Ranking | MTMF + Vegetation Indices | Reflectance | ||
Variable | Average Contribution (%) | Variable | Average Contribution (%) | |
1 | PRI | 65.9 | Band 16 (663.4 nm) | 30.0 |
2 | NDNI | 50.0 | Band 19 (709.0 nm) | 26.9 |
3 | MF-Sagebrush 1 | 49.4 | Band 1 (443.3 nm) | 25.9 |
4 | CAI | 35.0 | Band 126 (2,477.5 nm) | 25.2 |
5 | MF-Sagebrush 2 | 31.1 | Band 21 (739.2 nm) | 22.8 |
6 | MF-Rabbitbrush 1 | 21.3 | Band 2 (451.1 nm) | 22.4 |
7 | MF-Rabbitbrush 2 | 15.9 | Band 3 (464.5 nm) | 16.7 |
8 | INF-Sagebrush 2 | 14.8 | Band 28 (844.4 nm) | 14.1 |
9 | VI1 | 11.9 | Band 64 (1,419.9 nm) | 11.3 |
10 | MF-Litter 1 | 10.2 | Band 94 (1,805.8 nm) | 10.2 |
(b) | ||||
---|---|---|---|---|
Ranking | MTMF + Vegetation Indices | Reflectance | ||
Variable | Average Contribution (%) | Variable | Average Contribution (%) | |
1 | WBI | 50.0 | Band 63 (1,405.4 nm) | 35.0 |
2 | NDLI | 38.0 | Band 97 (1,987.0 nm) | 30.0 |
3 | NDWI | 30.0 | Band 31 (892.3 nm) | 20.5 |
4 | INF-Greasewood 2 | 20.5 | Band 1 (443.3 nm) | 17.5 |
5 | MF-Saltbush 1 | 18.7 | Band 17 (678.4 nm) | 15.0 |
6 | NDNI | 15.0 | Band 61 (1,329.5 nm) | 15.0 |
7 | VI1 | 6.9 | Band 4 (480.6 nm) | 12.1 |
8 | MF-Greasewood 1 | 6.0 | Band 22 (754.1 nm) | 10.0 |
9 | INF-Greasewood 1 | 5.5 | Band 94 (1,805.8 nm) | 10.0 |
10 | MF-Soil 1 | 5.0 | Band 23 (769.3 nm) | 8.4 |
(a) | ||||||
---|---|---|---|---|---|---|
Ref. | Sagebrush | Rabbitbrush | Wheatgrass | Litter | Sum | Commission Errors (%) |
Class. | ||||||
Sagebrush | 7 | 2 | 1 | 1 | 11 | 36.4 |
Rabbitbrush | 0 | 10 | 1 | 0 | 11 | 9.1 |
Wheatgrass | 1 | 0 | 14 | 1 | 16 | 12.5 |
Litter | 0 | 0 | 0 | 15 | 15 | 0 |
Sum | 8 | 12 | 16 | 17 | 53 | |
Omission Errors (%) | 12.5 | 16.7 | 12.5 | 11.8 | ||
Overall accuracy: 86.79% | ||||||
Kappa Coefficient of Agreement: 0.821 |
(b) | ||||||
---|---|---|---|---|---|---|
Ref. | Sagebrush | Rabbitbrush | Wheatgrass | Litter | Sum | Commission Errors (%) |
Class. | ||||||
Sagebrush | 5 | 1 | 1 | 0 | 7 | 28.6 |
Rabbitbrush | 1 | 11 | 0 | 0 | 12 | 8.3 |
Wheatgrass | 2 | 0 | 15 | 2 | 19 | 11.1 |
Litter | 0 | 0 | 0 | 15 | 15 | 0 |
Sum | 8 | 12 | 16 | 17 | 53 | |
Omission Errors (%) | 37.5 | 8.3 | 6.3 | 11.8 | ||
Overall accuracy: 86.79% | ||||||
Kappa Coefficient of Agreement: 0.819 |
(c) | ||||
---|---|---|---|---|
Kappa | ASE | MTMF + VIs | Reflectance | |
MTMF + VIs | 0.821 | 0.0622 | NA | |
Reflectance | 0.819 | 0.0629 | 0.0276* | NA |
(a) | |||||
---|---|---|---|---|---|
Ref. | Greasewood | Saltbush | Soil | Sum | Commission Errors |
Class. | |||||
Greasewood | 10 | 1 | 0 | 11 | 9.1 |
Saltbush | 1 | 10 | 1 | 12 | 16.7 |
Soil | 1 | 3 | 16 | 20 | 20 |
Sum | 12 | 14 | 17 | 43 | |
Omission Errors | 16.7 | 28.6 | 5.9 | ||
Overall accuracy: 83.72% | |||||
Kappa Coefficient: 0.751 |
(b) | |||||
---|---|---|---|---|---|
Ref. | Greasewood | Saltbush | Soil | Sum | Commission Errors |
Class. | |||||
Greasewood | 11 | 3 | 1 | 15 | 26.7 |
Saltbush | 1 | 7 | 0 | 8 | 12.5 |
Soil | 0 | 4 | 16 | 20 | 20 |
Sum | 12 | 14 | 17 | 43 | |
Omission Errors | 8.3 | 50 | 5.9 | ||
Overall accuracy: 79.07% | |||||
Kappa Coefficient: 0.682 |
(c) | ||||
---|---|---|---|---|
Kappa | ASE | MTMF + VIs | Reflectance | |
MTMF + VIs | 0.751 | 0.0856 | NA | |
Reflectance | 0.682 | 0.0905 | 0.5541* | NA |
Share and Cite
Im, J.; Jensen, J.R.; Jensen, R.R.; Gladden, J.; Waugh, J.; Serrato, M. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing. Remote Sens. 2012, 4, 327-353. https://doi.org/10.3390/rs4020327
Im J, Jensen JR, Jensen RR, Gladden J, Waugh J, Serrato M. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing. Remote Sensing. 2012; 4(2):327-353. https://doi.org/10.3390/rs4020327
Chicago/Turabian StyleIm, Jungho, John R. Jensen, Ryan R. Jensen, John Gladden, Jody Waugh, and Mike Serrato. 2012. "Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing" Remote Sensing 4, no. 2: 327-353. https://doi.org/10.3390/rs4020327
APA StyleIm, J., Jensen, J. R., Jensen, R. R., Gladden, J., Waugh, J., & Serrato, M. (2012). Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing. Remote Sensing, 4(2), 327-353. https://doi.org/10.3390/rs4020327