Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar
<p>Typical power spectral density function of the spaceborne SAR system.</p> "> Figure 2
<p>Distributed configuration of GEO SAR system.</p> "> Figure 3
<p>Results of bi-monostatic GEO SAR with various frequency errors: (<b>a</b>) BP image with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>f</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>8</mn> </mrow> </semantics></math>. (<b>b</b>) Azimuth profile of (<b>a</b>). (<b>c</b>) BP image with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>f</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>d</b>) Azimuth profile of (<b>c</b>). (<b>e</b>) BP image with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>f</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>f</b>) Azimuth profile of (<b>e</b>). (<b>g</b>) BP image with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mi>f</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>. (<b>h</b>) Azimuth profile of (<b>g</b>).</p> "> Figure 4
<p>BP images of multi-monostatic GEO SARs with various frequency errors: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>=</mo> <mo>±</mo> <mn>0.26</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>=</mo> <mo>±</mo> <mn>0.5</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> <mo>=</mo> <mo>±</mo> <mn>1</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mfenced close="|" open="|"> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </mfenced> <mo>≤</mo> <mn>0.5</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <mfenced close="|" open="|"> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </mfenced> <mo>≤</mo> <mn>1</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>; and (<b>f</b>) <math display="inline"><semantics> <mrow> <mfenced close="|" open="|"> <mrow> <mi mathvariant="sans-serif">Δ</mi> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </mfenced> <mo>≤</mo> <mn>2</mn> <mrow> <mo> </mo> <mi>Hz</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>Azimuth profiles of multi-monostatic GEO SARs with various frequency errors. (<b>a</b>) Given frequency errors. (<b>b</b>) Random frequency errors.</p> "> Figure 6
<p>The power spectrum density functions of random phase noise for GEO SAR and LEO SAR.</p> "> Figure 7
<p>Influence of phase noise with synthetic aperture time. (<b>a</b>) Standard deviation of QPE varies with synthetic aperture time. (<b>b</b>) ISLR caused by high-frequency phase noise varies with synthetic aperture time.</p> "> Figure 8
<p>Influence of phase noise in monostatic and multi-monostatic GEO SAR system. (<b>a</b>) Phase noise in monostatic and multi-monostatic GEO SAR system. (<b>b</b>) The azimuth profiles with the two kinds of phase noise.</p> "> Figure 9
<p>Flow chart of the ABP algorithm.</p> "> Figure 10
<p>Results of ABP. (<b>a</b>) Estimations of azimuth samples. (<b>b</b>) Estimations of azimuth node samples. (<b>c</b>) The azimuth profiles after ABP processing.</p> "> Figure 11
<p>Results of ABP. (<b>a</b>) Result after ABP processing. (<b>b</b>) Result after node error compensation.</p> "> Figure 12
<p>Sharpness and estimation MSE after ABP. (<b>a</b>) Sharpness after ABP; (<b>b</b>) estimation MSE after ABP.</p> "> Figure 13
<p>Schematic diagram of the NABP algorithm.</p> "> Figure 14
<p>Flow chart of the NABP algorithm.</p> "> Figure 15
<p>The variation in sharpness values with the number of iterations.</p> "> Figure 16
<p>The azimuth profiles in different cases.</p> ">
Abstract
:1. Introduction
2. Signal Model
2.1. Frequency Error Model
2.2. Echo Signal Model
3. Analysis of Phase Error Effect
3.1. Deterministic Error
3.2. Random Error
4. Autofocus Algorithm for Frequency Synchronization Error Compensation
4.1. Autofocus Back-Projection Algorithm
4.2. Node Autofocus Back-Projection Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Long, T.; Hu, C.; Ding, Z.; Dong, X.; Tian, W.; Zeng, T. Geosynchronous SAR: System and Signal Processing; Springer: Singapore, 2018. [Google Scholar]
- Zhang, W.; Yang, S.; Fan, Y.; Wu, W.; Zhao, B. Application potential and working mode requirements of GEO SAR satellite for comprehensive disaster reduction. Spacecr. Eng. 2017, 26, 127–131. [Google Scholar]
- Tomiyasu, K.; Pacelli, J.L. Synthetic Aperture Radar Imaging from an Inclined Geosynchronous Orbit. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 324–329. [Google Scholar] [CrossRef]
- Hobbs, S.E.; Bruno, D. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects. IEEE Trans. Geosci. Remote Sensing. 2010, 48, 2924–2929. [Google Scholar]
- Hu, C.; Chen, Z.; Li, Y.; Dong, X.; Hobbs, S. Research progress on geosynchronous synthetic aperture radar. Fundam. Res. 2021, 1, 346–363. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Tebaldini, S.; Rocca, F.; Broquetas, A. GEMINI: Geosynchronous SAR for Earth monitoring by interferometry and imaging. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Guarnieri, A.G.A.M.; Broquetas, A.B.A.; Recchia, A.R.A.; Rocca, F.R.F.; Ruiz-Rodon, J.R.J. Advanced Radar Geosynchronous Observation System: ARGOS. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1406–1410. [Google Scholar] [CrossRef]
- Dong, X.; Hu, C.; Chen, Z. Formation design and performance analysis for distributed geosynchronous SAR. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2020, 12, 236–245. [Google Scholar]
- Liang, D.; Zhang, H.; Liu, K.; Liu, D.; Wang, R.Y. Phase Synchronization Techniques for Bistatic and Multistatic Synthetic Aperture Radar: Accounting for Frequency Offset. IEEE Geosci. Remote Sens. Mag. 2022, 10, 2–17. [Google Scholar] [CrossRef]
- Weiss, M. Time and Frequency Synchronisation Aspects for Bistatic SAR Systems. In Proceedings of the 5th European Conference on Synthetic Aperture Radar (EUSAR 2004), Ulm, Germany, 25–27 May 2004; Volume 1. [Google Scholar]
- Fang, Z.; Li, Z.; Mao, X.; Yang, Y.; Wu, J.; Yang, J. A Time-Domain Image Formation for High Frame Rate UAV Swarm SAR. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Sun, X.; Chen, L.; Huang, X. Impact Analysis and Compensation Method of Frequency Synchronization Error in Distributed SAR. In Proceedings of the 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 8–10 July 2023. [Google Scholar]
- Wang, Y.; Ding, Z.; Li, L.; Liu, M.; Ma, X.; Sun, Y.; Zeng, T.; Long, T. First Demonstration of Single-Pass Distributed SAR Tomographic Imaging With a P-Band UAV SAR Prototype. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5238618. [Google Scholar] [CrossRef]
- Auterman, J.L. Phase-Stability Requirements for A Bistatic Sar. Microw. Rf. 1984, 23, 48. [Google Scholar]
- Krieger, G.; Younis, M. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 424–428. [Google Scholar] [CrossRef]
- Wang, W. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems. Fluct. Noise Lett. 2007, 7, L341–L350. [Google Scholar] [CrossRef]
- Wang, W.Q.; Ding, C.B.; Liang, X.D. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems. IET Radar Sonar Navig. 2008, 2, 1–11. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, D.; Zhang, Y. Analysis of frequency synchronization error in spaceborne parasitic SAR system. Guofang Keji Daxue Xuebao/J. Natl. Univ. Def. Technol. 2006, 28, 85. [Google Scholar]
- Rodriguez-Cassola, M.; Baumgartner, S.V.; Krieger, G. Bistatic TerraSAR-X/F-SAR spaceborne-airborne SAR experiment: Description, data processing, and results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 781–794. [Google Scholar] [CrossRef]
- Espeter, T.; Walterscheid, I.; Klare, J.; Gierull, C.; Brenner, A.; Ender, J.; Loffeld, O. Progress of Hybrid Bistatic SAR:Synchronization Experiments and First Imaging Results. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Zhang, H.; Deng, Y.; Wang, R.; Li, N.; Zhao, S.; Hong, F.; Wu, L.; Loffeld, O. Spaceborne/Stationary Bistatic SAR Imaging with TerraSAR-X as an Illuminator in Staring-Spotlight Mode. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5203–5216. [Google Scholar] [CrossRef]
- Cassola, M.R.; Martone, M.; De Zan, F.; Lopez-Dekker, P.; Prats, P.; Braeutigam, B.; Baumgartner, S.; Schulze, D.; Hajnsek, I.; Younis, M.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar]
- Younis, M.; Metzig, R.; Krieger, G. Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 429–433. [Google Scholar] [CrossRef]
- Rodriguez-Cassola, M.; Prats-Iraola, P.; López-Dekker, P.; Reigber, A.; Krieger, G.; Moreira, A. Autonomous time and phase calibration of spaceborne bistatic SAR systems. In Proceedings of the EUSAR 2014: 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2–6 June 2014. [Google Scholar]
- D’Errico, E.B.M. Distributed Space Missions for Earth System Monitoring; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Xie, Z.; Xu, Z.; Fan, C.; Han, S.; Huang, X. Robust Radar Waveform Optimization Under Target Interpulse Fluctuation and Practical Constraints Via Sequential Lagrange Dual Approximation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9711–9721. [Google Scholar] [CrossRef]
- Zeng, T.; Long, T.; Liu, Z.; Hu, C.; Liu, F. The Accurate Focusing and Resolution Analysis Method in Geosynchronous SAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3548–3563. [Google Scholar]
- Liu, Y.; Li, Z.; Suo, Z.; Li, J.; Bao, Z. Impact of frequency oscillator errors on GEO SAR imaging performance. Syst. Eng. Electron. 2015, 37, 61–66. [Google Scholar]
- He, Z.; He, F.; Sun, Z.; Dong, Z. Analysis of oscillator stability index in geosynchronous SAR. Bull. Surv. Mapp. 2014, 4, 19–21. [Google Scholar]
- Yarman, C.E.; Yazici, B.; Cheney, M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories. IEEE Trans. Image Process. 2008, 17, 84–93. [Google Scholar] [CrossRef]
- Schulz, T.J. Optimal Sharpness Function for SAR Autofocus. IEEE Signal Process. Lett. 2007, 14, 27–30. [Google Scholar] [CrossRef]
- Fienup, J.R.; Miller, J.J. Aberration correction by maximizing generalized sharpness metrics. J. Opt. Soc. Am. A (Opt. Image Sci. Vis.) 2003, 20, 609–620. [Google Scholar] [CrossRef]
- Chen, L.; An, D.; Huang, X. Extended Autofocus Backprojection Algorithm for Low-Frequency SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1323–1327. [Google Scholar] [CrossRef]
- Rutman, J.; Walls, F.L. Characterization of frequency stability in precision frequency sources. Proc. IEEE 1991, 79, 952–960. [Google Scholar] [CrossRef]
- Rutman, J. Characterization of phase and frequency instabilities in precision frequency sources 15th years of progress. Proc. IEEE 1978, 66, 1048–1075. [Google Scholar] [CrossRef]
- Zhou, P. System Design and Synchronization Technique of Spaceborne/Airborne Hybrid Bistatic Synthetic Aperture Radar; University of Electronic Science and Technology of China: Chengdu, China, 2008. [Google Scholar]
- Wang, Y.; Qu, C.; Gao, Y. Influence of Linear Phase error to image Quality for FMCW SAR. Microcomput. Inf. 2009, 25, 285–287. [Google Scholar]
- Wang, Y.; Qu, C. Influence of Secondary Phase Error to Image Quality for FMCW SAR. Command Control Simul. 2009, 31, 104–106. [Google Scholar]
- Du, H.; Song, Y.; Jiang, N.; An, D.; Wang, W.; Fan, C.; Huang, X. A Novel SAR Ground Maneuvering Target Imaging Method Based on Adaptive Phase Tracking. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5211916. [Google Scholar] [CrossRef]
- Xie, X.; Pi, Y. Impact and estimation of frequency source noise on bistatic SAR. J. Syst. Eng. Electron. 2010, 32, 275–278. [Google Scholar]
- Gao, Y.; Yu, W. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation. J. Radars 2014, 3, 176–182. [Google Scholar] [CrossRef]
- Ash, J.N. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 104–108. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, X.; He, S.; Zhao, H.; Shi, J. A Less-Memory and High-Efficiency Autofocus Back Projection Algorithm for SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 890–894. [Google Scholar]
Parameters | Values |
---|---|
−95 | |
−90 | |
−200 | |
−130 | |
−155 |
Parameters | Values |
---|---|
Semi-major axis | 42,164 km |
Eccentricity | 0 |
Inclination | |
Argument of periapsis | |
Right ascension of the ascending node | |
True anomaly |
Parameters | Values |
---|---|
: Center frequency | |
: Signal frequency bandwidth | |
: Pulse repetition frequency | |
: Pulse width | |
: Number of radars | |
: Synthetic aperture time |
Δf | Δφ | IRW (m) | PSLR (dB) | ISLR (dB) | Shift (m) |
---|---|---|---|---|---|
0 | 0 | 4.98 | −13.31 | −10.31 | 0 |
0.256 | 5.02 | −11.17 | −9.83 | −0.45 | |
0.512 | 4.98 | −9.41 | −8.61 | −1.06 | |
1.024 | 4.90 | −6.06 | −5.39 | −2.12 | |
2.048 | 4.5 (13.11) | −0.01 | 0.91 | −4.22 |
(Hz) | IRW (m) | PSLR (dB) | ISLR (dB) |
---|---|---|---|
0 | 4.98 | −13.28 | −10.35 |
5.00 | −10.68 | −6.15 | |
4.92 | −4.36 | −0.59 | |
4.97 | −0.04 | / | |
5.16 | −7.49 | −4.94 | |
4.80 | −5.27 | 0.97 | |
5.17 | −1.40 | 3.23 |
IRW (m) | PSLR (dB) | ISLR (dB) | |
---|---|---|---|
Ideal results | 4.98 | −13.28 | −10.35 |
Multi-monostatic | 5.00 | −13.13 | −10.34 |
Monostatic | 4.98 | −12.17 | −10.06 |
ABP | NABP | |
---|---|---|
Estimated Parameter | ||
Computational Complexity | ||
Storage |
IRW (m) | PSLR (dB) | ISLR (dB) | |
---|---|---|---|
0 | 4.98 | −13.28 | −10.35 |
ABP,4 | 5.00 | −13.32 | −10.37 |
NABP,4 | 5.00 | −12.00 | −10.17 |
NABP,15 | 5.00 | −12.86 | −10.32 |
NABP,31 | 5.00 | −13.18 | −10.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Chen, L.; Zhou, Z.; Du, H.; Huang, X. Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar. Remote Sens. 2024, 16, 1470. https://doi.org/10.3390/rs16081470
Sun X, Chen L, Zhou Z, Du H, Huang X. Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar. Remote Sensing. 2024; 16(8):1470. https://doi.org/10.3390/rs16081470
Chicago/Turabian StyleSun, Xiaoying, Leping Chen, Zhengquan Zhou, Huagui Du, and Xiaotao Huang. 2024. "Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar" Remote Sensing 16, no. 8: 1470. https://doi.org/10.3390/rs16081470
APA StyleSun, X., Chen, L., Zhou, Z., Du, H., & Huang, X. (2024). Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar. Remote Sensing, 16(8), 1470. https://doi.org/10.3390/rs16081470