Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales
<p>Location of mango farms in the three mango growing regions of Australia.</p> "> Figure 2
<p>Flowchart showing the sequence of procedure steps used in this study to generate the results.</p> "> Figure 3
<p>Example of 18 tree locations on the classified NDVI map (<b>a</b>) and on the ESRI basemap image (<b>b</b>). The points with L, M and H prefixes represent the different tree vigour classes of low, medium and high, respectively.</p> "> Figure 4
<p>Summary of fruits counted (<b>a</b>) per farm and (<b>b</b>) heterogeneity of cultivar yield distribution from 2015 to 2021. The numerical values and black dots associated with each boxplot represent the number of trees of that particular cultivar and outliers, respectively.</p> "> Figure 5
<p>Correlation between fruit count and the 24 VIs using the entire datasets of 1958 datapoints. The green and red colour ramps show the strength and direction of the correlation being positive and negative, respectively.</p> "> Figure 6
<p>Distribution of slopes for CIRE_1 with average slope and standard deviation.</p> "> Figure 7
<p>Relationships identified between RENDVI and fruit count: (<b>a</b>) and (<b>b</b>) were positive for 2016 and 2017, (<b>c</b>) negative for 2020 and (<b>d</b>) non-existent for 2021.</p> "> Figure 8
<p>RF prediction of fruit count using all individual tree datasets (combined model). The different coloured points represent the sampled trees from the respective farms and regions. n = 390 represents the number of datapoints (20%) used for model validation.</p> "> Figure 9
<p>RF-based location (region) prediction of fruit count in the (<b>a</b>) Northern Territory (NT), (<b>b</b>) Northern Queensland (N–QLD) and (<b>c</b>) South East Queensland (SE–QLD). The different coloured points represent the sampled trees on a given farm in the respective regions.</p> "> Figure 10
<p>RF-based variable importance plots for models from (<b>a</b>) combined datasets, (<b>b</b>) Northern Territory (NT), (<b>c</b>) Northern Queensland (N–QLD) and (<b>d</b>) South East Queensland (SE–QLD) and the best (<b>e</b>) seasonal and (<b>f</b>) cultivar models.</p> "> Figure 11
<p>Comparison of total actual and predicted yield for the 51 validation points (blocks per season) obtained from 29 unique blocks with available actual harvest data from 2016 to 2021.</p> "> Figure 12
<p>An example of a tree-level yield variability map derived from the RF-based combined model (<b>right</b>). The RGB image of the mango orchard mapped is shown on the (<b>left</b>). The legend presents an industry-based categorization of yield variability ranging from low (0–55) to high (139–170) for this study.</p> ">
Abstract
:1. Introduction
- Explore the relationships between VIs derived from WV2 and WV3 imagery and fruit count at the individual tree level, using data sourced from different growing seasons, locations and cultivars.
- Evaluate a range of analytics to determine if a generic crop load (yield) model can be derived between canopy reflectance and yield.
- Validate the accuracies of a generic model for estimating fruit number at the individual tree and orchard block level.
- Produce tree-level yield variability maps.
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Satellite Data
Spectral Data Extraction and VI Calculation
2.4. Data Analysis
2.4.1. Correlation Analysis
2.4.2. Linear Regression and Slope Analysis
2.4.3. Random Forest Prediction of Fruit Count
2.4.4. Model Evaluation
2.4.5. Yield Variability Mapping
3. Results
3.1. Exploratory Data Analysis
3.2. Exploring the Relationship Between VIs and Fruit Count
3.2.1. All Data Aggregation Results
3.2.2. Separate Cultivar and Region Regression Results
3.2.3. Individual Block Meta-Regression Analysis Results
- Location (region): the mean of all slopes tested was not significantly different from zero in the NT, whereas one VI (SIPI with p = 0.023) in the N–QLD and two VIs (N1RENDVI with p = 0.041 and CIRE_1 with p = 0.038) in the SE–QLD regions were significantly different from zero.
- Cultivar: there were significant differences in the mean of the slopes for all VIs except SIPI for both KP and Calypso and N1_N2NDVI for LJ.
- Season: The mean of the slopes for 2015, 2020 and 2021 was not significantly different from zero and the null hypothesis was therefore accepted. However, slopes were significantly different in the 2016, 2017 and 2019 seasons.
3.3. Random Forest Prediction of Fruit Count at the Individual Tree Level
3.3.1. Fruit Count Prediction Using Combined Datasets
3.3.2. Individual Tree Fruit Count Prediction Using Data Subsets (Location, Cultivar and Season)
3.4. Validation of Combined and Subset (Location, Season and Cultivar) Predicted Fruit Count Models at the Block Level
3.5. Yield Variability Mapping for a Block at the Tree Level
4. Discussion
4.1. Relationship Between VIs and Fruit Count
4.2. RF Prediction Using All Datasets and Subsets
4.3. Validation of Predicted Fruit Count Models at the Block Level
4.4. Mapping the Spatial Variability of Tree Yield in an Orchard Block
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Value of Agricultural Production. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 8 January 2023).
- Torgbor, B.A.; Rahman, M.M.; Brinkhoff, J.; Sinha, P.; Robson, A. Integrating Remote Sensing and Weather Variables for Mango Yield Prediction Using a Machine Learning Approach. Remote Sens. 2023, 15, 3075. [Google Scholar] [CrossRef]
- Song, T. Characterization of Soil-Plant Leaf Nutrient Elements and Key Factors Affecting Mangoes in Karst Areas of Southwest China. Land 2022, 11, 970. [Google Scholar] [CrossRef]
- Sarron, J.; Malézieux, É.; Sané, C.; Mango, É.F. Yield Mapping at the Orchard Scale Based on Tree Structure and Land Cover Assessed by UAV. Remote Sens. 2018, 10, 1900. [Google Scholar] [CrossRef]
- Hoffman, L.A.; Etienne, X.L.; Irwin, S.H.; Colino, E.V.; Toasa, J.I. Forecast performance of WASDE price projections for U.S. corn. Agric. Econ. 2015, 1, 157–171. [Google Scholar] [CrossRef]
- Rahman, M.M.; Robson, A.; Bristow, M. Exploring the Potential of High Resolution WorldView-3 Imagery for Estimating Yield of Mango. Remote Sens. 2018, 10, 1866. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 2016, 1, 78–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Chen, B.; Brown, P. California Almond Yield Prediction at the Orchard Level With a Machine Learning Approach. Front. Plant Sci. 2019, 1, 809. [Google Scholar] [CrossRef] [PubMed]
- Zarate-Valdez, J.L.; Muhammad, S.; Saa, S.; Lampinen, B.D.; Brown, P.H. Light interception, leaf nitrogen and yield prediction in almonds: A case study. Eur. J. Agron. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Anderson, N.T.; Underwood, J.P.; Rahman, M.M.; Robson, A.; Walsh, K.B. Estimation of fruit load in mango orchards: Tree sampling considerations and use of machine vision and satellite imagery. Precis. Agric. 2018, 1, 823–839. [Google Scholar] [CrossRef]
- He, L. Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. Comput. Electron. Agric. 2022, 195, 106812. [Google Scholar] [CrossRef]
- Marani, R.; Milella, A.; Petitti, A.; Reina, G. Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Precis. Agric. 2020, 1, 387–413. [Google Scholar] [CrossRef]
- Robson, A.J.; Rahman, M.M.; Muir, J. Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. Remote Sens. 2017, 9, 1223. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Ground based hyperspectral imaging for extensive mango yield estimation. Comput. Electron. Agric. 2019, 1, 126–135. [Google Scholar] [CrossRef]
- Sinha, P.; Robson, A.J. Satellites Used to Predict Commercial Mango Yields. McPherson Media Group (MMG). Available online: https://www.treecrop.com.au/news/satellites-used-predict-commercial-mango-yields/ (accessed on 12 August 2022).
- Torgbor, B.A.; Rahman, M.M.; Robson, A.; Brinkhoff, J.; Khan, A. Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana. Horticulturae 2022, 1, 11. [Google Scholar] [CrossRef]
- Stein, M.; Bargoti, S.; Underwood, J. Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry. Sensors 2016, 16, 1915. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Perez-Ruiz, M.; Martinez-Guanter, J.; Valente, J. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Front. Plant Sci. 2020, 1, 1086. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F. Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture. Sci. Rep. 2021, 11, 2721. [Google Scholar] [CrossRef]
- Gan, H.; Lee, W.S.; Alchanatis, V.; Abd-Elrahman, A. Active thermal imaging for immature citrus fruit detection. Biosyst. Eng. 2020, 1, 291–303. [Google Scholar] [CrossRef]
- Bai, X. Comparison of Machine-Learning and CASA Models for Predicting Apple Fruit Yields from Time-Series Planet Imageries. Remote Sens. 2021, 13, 3073. [Google Scholar] [CrossRef]
- Jeong, J.H. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 1, e0156571. [Google Scholar] [CrossRef]
- Fukuda, S.; Spreer, W.; Yasunaga, E.; Yuge, K.; Sardsud, V.; Müller, J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water Manag. 2013, 1, 142–150. [Google Scholar] [CrossRef]
- NTG. Soils of the Northern Territory—Factsheet. Department of Land Resource Management. Available online: https://depws.nt.gov.au/rangelands/technical-notes-and-fact-sheets/land-soil-vegetation-technical-information (accessed on 8 January 2023).
- BOM. Regional Weather and Climate Guide. In the last 30 years in South East Queensland. Bureau of Meteorology. Available online: www.bom.gov.au/climate/climate-guides/guides/044-South-East-QLD-Climate-Guide.pdf (accessed on 5 July 2023).
- ESRI. ArcGIS Version 10.8 for Desktop; Environmental Systems Research Institute Inc.: West Redlands, CA, USA, 2019. [Google Scholar]
- Jawak, S.D.; Luis, A.J.; Fretwell, P.T.; Convey, P.; Durairajan, U.A. Semiautomated Detection and Mapping of Vegetation Distribution in the Antarctic Environment Using Spatial-Spectral Characteristics of WorldView-2 Imagery. Remote Sens. 2019, 11, 1909. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 1, 247–252. [Google Scholar] [CrossRef]
- Barnes, E. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Volume 1619, p. 6. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 1, 416–426. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 1, 221–230. [Google Scholar]
- Robson, A.J.; Rahman, M.M.; Muir, J.; Saint, A.; Simpson, C.; Searle, C. Evaluating satellite remote sensing as a method for measuring yield variability in Avocado and Macadamia tree crops. Adv. Anim. Biosci. 2017, 1, 498–504. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 1, 289–298. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with Erts; NASA Special Publication: Washington, DC, USA, 1974; Volume 351. [Google Scholar]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 1, 165–173. [Google Scholar] [CrossRef]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed difference vegetation index (TDVI) for vegetation cover mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens. Environ. 1972, VIII, 1355. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 1, 663–666. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 1, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 1, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 1, 271–282. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Litvinenko, V.S.; Eckart, L.; Eckart, S.; Enke, M. A brief comparative study of the potentialities and limitations of machine-learning algorithms and statistical techniques. E3S Web Conf. 2021, 266, 02001. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Houborg, R.; Dunn, B.W. Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery. Agric. Water Manag. 2022, 273, 107907. [Google Scholar] [CrossRef]
- Dong, X.; Zc, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 1, 133. [Google Scholar] [CrossRef]
- Perez, R.; Cebecauer, T.; Šúri, M. Chapter 2—Semi-Empirical Satellite Models. In Solar Energy Forecasting and Resource Assessment; Kleissl, J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 21–48. [Google Scholar]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 1, 316–322. [Google Scholar] [CrossRef]
- Suarez, L.A.; Robson, A.; Brinkhoff, J. Early-Season forecasting of citrus block-yield using time series remote sensing and machine learning: A case study in Australian orchards. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103434. [Google Scholar] [CrossRef]
- Zhu, Y. Rapid Target Detection of Fruit Trees Using UAV Imaging and Improved Light YOLOv4 Algorithm. Remote Sens. 2022, 14, 4324. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, T.; Abd-Elrahman, A.; Whitaker, V.M.; Wilkinson, B. Object-Detection from Multi-View remote sensing Images: A case study of fruit and flower detection and counting on a central Florida strawberry farm. Int. J. Appl. Earth Obs. Geoinformation. 2023, 123, 103457. [Google Scholar] [CrossRef]
- Donovan, J. Australian Mango Varieties. Available online: https://lawn.com.au/australian-mango-varieties/ (accessed on 29 March 2023).
- Payne, A.B.; Walsh, K.B.; Subedi, P.P.; Jarvis, D. Estimation of mango crop yield using image analysis—Segmentation method. Comput. Electron. Agric. 2013, 1, 57–64. [Google Scholar] [CrossRef]
- Smith, J.; Smith, P. Environmental Modelling: An Introduction; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Anderson, N.T.; Walsh, K.B.; Wulfsohn, D. Technologies for Forecasting Tree Fruit Load and Harvest Timing—From Ground, Sky and Time. Agronomy 2021, 11, 1409. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Robson, A.J. Block-level macadamia yield forecasting using spatio-temporal datasets. Agric. For. Meteorol. 2021, 303, 108369. [Google Scholar] [CrossRef]
- Filippi, P.; Whelan, B.M.; Vervoort, R.W.; Bishop, T.F.A. Mid-season empirical cotton yield forecasts at fine resolutions using large yield mapping datasets and diverse spatial covariates. Agric. Syst. 2020, 184, 102894. [Google Scholar] [CrossRef]
- Deines, J.M.; Patel, R.; Liang, S.-Z.; Dado, W.; Lobell, D.B. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sens. Environ. 2021, 1, 112174. [Google Scholar] [CrossRef]
- Bana, J.; Kumar, S.; Sharma, H. Diversity and nature of damage of mango insect-pests in south Gujarat ecosystem. J. Entomol. Zool. Stud. 2018, 1, 274–278. [Google Scholar]
- Kumar, K.; Adak, T.; Singha, A.; Shukla, S.; Singh, V. Appraisal of soil fertility, leaf nutrient concentration and yield of mango (Mangifera indica L.) at Malihabad region, Uttar Pradesh. Curr. Adv. Agric. Sci. (Int. J.) 2012, 1, 13–19. [Google Scholar]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
Region | Farm | No. of Blocks | Season | Cultivar | No. of Sampled Trees | Satellite | Image Acquisition Date |
---|---|---|---|---|---|---|---|
NT | Farm 1 | 6 | 2016 2017 2019 2020 2021 | Calypso | 432 * | WV3 WV3 WV3 WV3 WV2 | 23-10-2016 16-08-2017 27-08-2019 27-08-2020 01-09-2021 |
Farm 2 | 5 | 2020 2021 | KP, R2E2, Parvin | 158 * | WV3 WV3 | 27-09-2020 23-09-2021 | |
Farm 3 | 6 | 2020 2021 | KP, R2E2 | 144 * | WV3 WV3 | 27-09-2020 23-09-2021 | |
Farm 4 | 5 | 2020 2021 | KP, R2E2, LG, LJ | 180 | WV3 WV2 | 04-11-2020 16-11-2021 | |
Farm 5 | 2 | 2020 2021 | Calypso | 36 * | WV3 WV3 | 27-09-2020 23-09-2021 | |
Farm 6 | 2 | 2020 2021 | HG | 72 | WV3 WV2 | 04-11-2020 16-11-2021 | |
Farm 7 | 2 | 2016 2019 | KP, R2E2 | 72 | WV3 WV3 | 23-10-2016 27-08-2019 | |
Farm 8 | 5 | 2019 2020 | Calypso, HG | 126 * | WV3 WV3 | 08-12-2019 07-11-2020 | |
Farm 9 | 4 | 2020 | KP, R2E2, Keitt | 72 | WV3 | 07-11-2020 | |
N–QLD | Farm 10 | 4 | 2019 2021 | Calypso | 144 | WV3 WV3 | 08-12-2019 07-11-2020 |
Farm 11 | 4 | 2019 2020 | KP, HG, R2E2 | 108 * | WV3 WV3 | 08-12-2019 07-11-2020 | |
Farm 12 | 2 | 2020 | KP, R2E2 | 36 | WV3 | 07-11-2020 | |
Farm 13 | 3 | 2019 2020 | Calypso | 108 | WV3 WV3 | 06-12-2019 06-12-2020 | |
SE–QLD | Farm 14 | 5 | 2015 2016 2017 2019 2020 | Calypso, HG, R2E2 | 270 * | WV2 WV3 WV3 WV3 WV3 | 02-09-2015 23-09-2016 14-05-2017 06-12-2019 06-12-2020 |
Total | 55 | 1958 |
Image Band | Band Name | Wavelength (nm) |
---|---|---|
1 | Coastal (C) | 400–450 |
2 | Blue (B) | 450–510 |
3 | Green (G) | 510–580 |
4 | Yellow (Y) | 585–625 |
5 | Red (R) | 630–690 |
6 | Red-edge (RE) | 705–745 |
7 | NIR-1 | 770–895 |
8 | NIR-2 | 860–900/1040 * |
Vegetation Index | Formula | Reference |
---|---|---|
Red-edge Normalized Difference Vegetation Index (RENDVI) | (RE − R)/(RE + R) | [28] |
Normalized difference Red-edge index (N1/RENDVI) | (NIR1 − R)/(NIR1 + RE) | [29] |
Normalized difference Red-edge index 1 (N1RENDVI) | (NIR1 − RE)/(NIR1 + RE) | [29] |
Normalized difference Red-edge index 2 (N2RENDVI) | (NIR2 − RE)/(NIR2 + RE) | [29] |
Transformed Chlorophyll Absorption in Reflectance Index (TCARI) | 3 × ((RE − R) − 0.2 × (RE − G) × (RE/R)) | [30] |
Structure Insensitive Pigment Index (SIPI) | (NIR1 − B)/(NIR1 + R) | [31] |
Structure Insensitive Pigment Index (CB SIPI) | NIR1 − CB)/(NIR1 + CB) | [31] |
Normalized Difference NIR Index (N1/N2NDVI) | (NIR1 − R)/(NIR1 + NIR2) | [32] |
Green Normalized Difference Vegetation Index (N1GNDVI) | (NIR1 − G)/(NIR1 + G) | [33] |
Normalized Difference Vegetation Index (N1NDVI) | (NIR1 − R)/(NIR1 + R) | [34] |
Normalized Difference Vegetation Index (N2NDVI) | (NIR2 − R)/(NIR2 + R) | [34] |
Renormalized Difference Vegetation Index 1 (RDVI1) | (NIR1 − R)/(SQRT(NIR1 + R)) | [32] |
Renormalized Difference Vegetation Index 2 (RDVI2) | (NIR2 − R)/(SQRT(NIR2 + R)) | [32] |
Modified Simple Ratio (MSR) | (NIR1/R − 1)/(SQRT((NIR1/R) + 1)) | [35] |
Transformed Difference Vegetation Index 1 (TDVI1) | 1.5 × ((NIR1 − R)/(SQRT(NIR12 + R + 0.5)) | [36] |
Transformed Difference Vegetation Index 2 (TDVI2) | 1.5 × ((NIR2 − R)/(SQRT(NIR22 + R + 0.5)) | [36] |
Ratio Vegetation Index (RVI) | (NIR1)/(R) | [37,38] |
Yellow Soil Adjusted Vegetation Index (Yellow SAVI) | (NIR1 − CB) × (1 + 0.5)/(NIR1 + CB + 0.5) | [39] |
Enhanced Vegetation Index 1 (EVI2N1) | 2.5 × ((NIR1 − R)/(1 + NIR1 + (2.4 × R)) | [40] |
Enhanced Vegetation Index 2 (EVI2N2) | 2.5 × ((NIR2 − R)/(1 + NIR2 + (2.4 × R)) | [40] |
Chlorophyll Index Green 1 (CIg_1) | (NIR1)/(G) − 1 | [41] |
Chlorophyll Index Green 2 (CIg_2) | (NIR2)/(G) − 1 | [41] |
Chlorophyll Index Red-edge 1 (CIRE_1) | (NIR1)/(RE) − 1 | [41] |
Chlorophyll Index Red-edge 2 (CIRE_2) | (NIR2)/(RE) − 1 | [41] |
Subset | Description | Best Correlation Coefficient (r) | Best Contributing VI (s) |
---|---|---|---|
Cultivar | Calypso | 0.24 | CIRE_2 |
KP | −0.19 | CIRE_2 and CB-SIPI | |
HG | 0.39 | CIRE_2, N2RENDVI, TDVI1 and N1/N2NDVI | |
Parvin | −0.69 | EVI2N2 | |
R2E2 | 0.35 | CB-SIPI | |
LJ | 0.15 | Yellow-SAVI | |
LG | 0.51 | CB-SIPI | |
Keitt | 0.76 | N2RENDVI | |
Region | NT | −0.18 | SIPI |
N–QLD | −0.15 | Yellow-SAVI | |
SE–QLD | 0.34 | CIRE_2 and N2RENDVI |
Regional Model | All 24 Predictors | 10 Top Ranked Predictors | 6 Top Ranked Predictors |
---|---|---|---|
NT | 38.1% | 42.5% | 40.8% |
N–QLD | 36.3% | 37.9% | 36.6% |
SE–QLD | 29.0% | 30.0% | 29.2% |
Model | Description | PRMSE (%) | MAE (No. of Fruits/Block) * | R2 | No. of Calibration Datapoints | No. of Validation Blocks |
---|---|---|---|---|---|---|
Location (Region) | NT | 16.8 | 59.2 | 0.75 | 1940 | 26 |
N–QLD | 61.0 | 41.9 | 0.78 | 8 | ||
SE–QLD | 7.2 | 40.6 | 0.93 | 17 | ||
Season | 2016 | 46.2 | 103.4 | 0.18 | 1940 | 4 |
2017 | 35.8 | 47.8 | 0.17 | 5 | ||
2019 | 7.7 | 39.7 | 0.93 | 18 | ||
2020 | 12.2 | 50.6 | 0.77 | 20 | ||
2021 | 14.4 | 45.7 | 0.97 | 4 | ||
Cultivar † | Calypso | 10.0 | 50.7 | 0.86 | 1940 | 35 |
KP | 174.5 | 76.3 | 0.90 | 6 | ||
HG | 44.5 | 33.4 | 0.19 | 7 | ||
R2E2 | 72.3 | 38.7 | 0.98 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torgbor, B.A.; Sinha, P.; Rahman, M.M.; Robson, A.; Brinkhoff, J.; Suarez, L.A. Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales. Remote Sens. 2024, 16, 4170. https://doi.org/10.3390/rs16224170
Torgbor BA, Sinha P, Rahman MM, Robson A, Brinkhoff J, Suarez LA. Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales. Remote Sensing. 2024; 16(22):4170. https://doi.org/10.3390/rs16224170
Chicago/Turabian StyleTorgbor, Benjamin Adjah, Priyakant Sinha, Muhammad Moshiur Rahman, Andrew Robson, James Brinkhoff, and Luz Angelica Suarez. 2024. "Exploring the Relationship Between Very-High-Resolution Satellite Imagery Data and Fruit Count for Predicting Mango Yield at Multiple Scales" Remote Sensing 16, no. 22: 4170. https://doi.org/10.3390/rs16224170