Identification Method for Spring Dust Intensity Levels Based on Multiple Remote Sensing Parameters
<p>(<b>a</b>) The underlying surface type; (<b>b</b>) the frequency of dust events and the average PM10 concentration at 30 stations from March to May 2023.</p> "> Figure 2
<p>(<b>a</b>) Correlation analysis between brightness temperature difference (BTD) and multiple infrared dust index (MIDI). The gray circles represent all samples. The colored triangles represent the statistical distribution of different levels of surface dust events. (<b>b</b>) Correlation distribution for non-primary sand source, desert, and gobi. The highlighted in the red circled and yellow circled area is the misclassification of some non-dust data. The yellow dotted line represents different thresholds for MIDI and BTD.</p> "> Figure 3
<p>(<b>a</b>) The statistical distribution of MIDIs for different dust levels on different underlying surfaces. The frequency distribution of MIDIs under different underlying surface conditions during (<b>b</b>) the entire study period and (<b>c</b>) dust weather periods. (<b>d</b>) The statistical distribution of BTDs corresponding to different dust levels. (<b>e</b>,<b>f</b>) are the same as (<b>b</b>,<b>c</b>), but for BTD. In (<b>a</b>,<b>d</b>), the horizontal dashed lines denote the average statistical values of the corresponding underlying surfaces, the dots represent the mean values of the corresponding dust levels, the vertical lines represent the 10th percentile (lower) and 90th percentile (upper), and the horizontal lines from top to bottom represent the 25th, 50th, and 75th percentiles (same for Figure 5).</p> "> Figure 4
<p>The highest background brightness temperature distributions during 07–09 UTC on dust occurrence days of 21 March 2023, 10 April 2023, 19 April 2023, and 19 May 2023.</p> "> Figure 5
<p>The distribution of the infrared difference dust index (IDDI) statistical values under different PM<sub>10</sub> ranges in (<b>a</b>) non-primary sand source areas and (<b>b</b>) desert–gobi areas, and the statistics of (<b>c</b>) PM<sub>10</sub> and (<b>d</b>) IDDI for different dust intensity levels.</p> "> Figure 6
<p>Comparison of satellite identification results of dust levels with near-surface station observations at 12:00 UTC on 21 March, 2023, 09:00 UTC on 10 April, 10:00 UTC on 19 April, and 00:00 UTC on 19 May, 2023. The black-and-white backgrounds of the figures represent the cloud images at the corresponding time. The blue dots denote the distribution of ground observation stations.</p> "> Figure 7
<p>(<b>a</b>) Lidar data from Jiuquan station from 13:00 UTC on April 18, 2023, to 13:00 UTC on 20 April, 2023; (<b>b</b>) wind profiling radar data from Jiuquan station on 19 April. The direction of the arrows represents the wind direction, while the length of the arrows indicates the wind speed. The black box represents the wind field near the altitude of 2500m; (<b>c</b>) true-color composite image from H9 satellite at 12:00 UTC on 19 April and 18:00 UTC on 19 April. The blue circles represent the dust storm areas; (<b>d</b>) CALIOP aerosol subtype image from 8:06 UTC to 8:19 UTC on 19 April, 2023. The blue box indicates the area around Jiuquan at an altitude of 2–5 km.</p> "> Figure 7 Cont.
<p>(<b>a</b>) Lidar data from Jiuquan station from 13:00 UTC on April 18, 2023, to 13:00 UTC on 20 April, 2023; (<b>b</b>) wind profiling radar data from Jiuquan station on 19 April. The direction of the arrows represents the wind direction, while the length of the arrows indicates the wind speed. The black box represents the wind field near the altitude of 2500m; (<b>c</b>) true-color composite image from H9 satellite at 12:00 UTC on 19 April and 18:00 UTC on 19 April. The blue circles represent the dust storm areas; (<b>d</b>) CALIOP aerosol subtype image from 8:06 UTC to 8:19 UTC on 19 April, 2023. The blue box indicates the area around Jiuquan at an altitude of 2–5 km.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Dust Identification Method
3. Results
3.1. Methods for Determining the Dust Level
3.2. Analysis of Satellite Dust Identification Results and Error Sources
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Z.; Li, J.; Han, H.; Huang, A.; Sohn, B.J.; Zhang, P. Asian dust height and infrared optical depth retrievals over land from hyperspectral longwave infrared radiances. J. Geophys. Res. Atmos. 2012, 117, D19202. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Jia, R.; Liu, Y.; Hua, S.; Zhu, Q.; Shao, T. Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product. J. Meteorol. Res. 2018, 32, 707–722. [Google Scholar] [CrossRef]
- Huang, J.; Ge, J.; Weng, F. Detection of Asia dust storms using multisensor satellite measurements. Remote Sens. Environ. 2007, 110, 186–191. [Google Scholar] [CrossRef]
- Tu, A.Q.; Wang, Z.Z.; Zhu, G.H.; Wang, Z.F.; Zhang, H.; Zhang, S.; Liu, D.; Weng, N. Pollution characteristics of two strong dust processes in northern China in March 2021. Pollution characteristics of two strong dust processes in northern China in March 2021. J. Arid. Meteorol. 2023, 41, 607–619. (In Chinese) [Google Scholar]
- Kato, S.; Rose, F.G.; Sun-Mack, S.; Miller, W.F.; Chen, Y.; Rutan, D.A.; Stephens, G.L.; Loeb, N.G.; Minnis, P.; Wielicki, B.A.; et al. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res. 2011, 116, D19209. [Google Scholar] [CrossRef]
- Chen, T.; Guo, J.; Li, Z.; Zhao, C.; Liu, H.; Cribb, M.; Wang, F.; He, J. A CloudSat Perspective on the Cloud Climatology and Its Association with Aerosol Perturbations in the Vertical over Eastern China. J. Atmos. Sci. 2016, 73, 3599–3616. [Google Scholar] [CrossRef]
- Ham, S.-H.; Kato, S.; Rose, F.G.; Sun-Mack, S.; Chen, Y.; Miller, W.F.; Scott, R.C. Combining Cloud Properties from CALIPSO, CloudSat, and MODIS for Top-of-Atmosphere (TOA) Shortwave Broadband Irradiance Computations: Impact of Cloud Vertical Profiles. J. Appl. Meteorol. Clim. 2022, 61, 1449–1471. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Sang, J.; Kim, M.K.; Kim, K.M.; Koster, R.D.; Yasunari, T.J. Impacts of Snow Darkening by Deposition of Light-Absorbing Aerosols on Hydroclimate of Eurasia During Boreal Spring and Summer. J. Geophys. Res. Atmos. 2018, 123, 8441–8461. [Google Scholar] [CrossRef]
- Barkley, A.E.; Olson, N.E.; Prospero, J.M.; Gatineau, A.; Panechou, K.; Maynard, N.G.; Blackwelder, P.; China, S.; Ault, A.P.; Gaston, C.J. Atmospheric Transport of North African Dust-Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron Transport to the Equatorial North Atlantic Ocean. Geophys. Res. Lett. 2021, 48, e2020GL090476. [Google Scholar] [CrossRef]
- Maki, T.; Lee, K.C.; Pointing, S.B.; Watanabe, K.; Aoki, K.; Archer, S.D.; Lacap-Bugler, D.C.; Ishikawa, A. Desert and anthropogenic mixing dust deposition influences microbial communities in surface waters of the western Pacific Ocean. Sci. Total Environ. 2021, 791, 148026. [Google Scholar] [CrossRef] [PubMed]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Campos y Sansano, A.; Panechou, K. Caracterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Glob. Biogeochem. Cycles 2020, 34, e2020GB006536. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; An, Z.S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J. Geophys. Res. Atmos. 1997, 102, 28041–28047. [Google Scholar] [CrossRef]
- Qu, J.; Hao, X.; Kafatos, M.; Wang, L. Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements. IEEE Geosci. Remote Sens. Lett. 2006, 3, 484–486. [Google Scholar] [CrossRef]
- Ciren, P.; Kondragunta, S. Dust aerosol index (DAI) algorithm for MODIS. J. Geophys. Res. Atmos. 2014, 119, 4770–4792. [Google Scholar] [CrossRef]
- Yue, H.; He, C.; Zhao, Y.; Ma, Q.; Zhang, Q. The brightness temperature adjusted dust index: An improved approach to detect dust storms using MODIS imagery. Int. J. Appl. Earth Obs. Geoinform. 2017, 57, 166–176. [Google Scholar] [CrossRef]
- Klüser, L.; Schepanski, K. Remote sensing of mineral dust over land with MSG infrared channels: A new Bitemporal Mineral Dust Index. Remote Sens. Environ. 2009, 113, 1853–1867. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, N.-M.; Hu, X.-Q.; Dong, C.-H. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Glob. Planet. Chang. 2006, 52, 197–206. [Google Scholar] [CrossRef]
- Li, B.; Lu, S.; Sun, X.; Gao, J.; Meng, X.; Zhao, Y.; Lyu, D. Dust detection algorithm based on the entropy of visible band brightness and brightness temperature difference. J. Remote Sens. 2018, 22, 647–657. [Google Scholar] [CrossRef]
- Legrand, M.; Plana-Fattori, A.; N’Doumé, C. Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. Atmos. 2001, 106, 18251–18274. [Google Scholar] [CrossRef]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Jafari, R.; Malekian, M. Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. Int. J. Remote Sens. 2015, 36, 597–617. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, L.; Zhu, J.; Wei, J.; Su, Q.; Sun, W.; Liu, F.; Shu, M. A simplified Suomi NPP VIIRS dust detection algorithm. J. Atmos. Sol.-Terr. Phys. 2017, 164, 314–323. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, J.; Lee, J.; Lee, S.; Kim, J.S.; Chang, L.S.; Ou, S. Combined dust detection algorithm by using MODIS infrared channels over East Asia. Remote Sens. Environ. 2014, 141, 24–39. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Han, D.; Zheng, F.; Zhang, W. Dynamic dust detection method based on geostationary meteorological satellite. Remote Sens. Inf. 2018, 33, 36–44. (In Chinese) [Google Scholar]
- Karimi, N.; Moridnejad, A.; Golian, S.; Samani, J.M.V.; Karimi, D.; Javadi, S. Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can. J. Remote Sens. 2012, 38, 586–599. [Google Scholar] [CrossRef]
- Hao, X.; Qu, J.J. Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. J. Appl. Remote Sens. 2007, 1, 013510. [Google Scholar] [CrossRef]
- Luo, J.N.; Xu, Z.; Qi, Y.G. Global Dust Remote Sensing with the FengYun-3 Satellite. J. Desert Res. 2015, 35, 690–698. (In Chinese) [Google Scholar]
- Roskovensky, J.K.; Liou, K.N. Differentiating airborne dust from cirrus clouds using MODIS data. Geophys. Res. Lett. 2005, 32, L12809. [Google Scholar] [CrossRef]
- Liu, Q. A Method and System for Identifying Sand-Dust Regions Based on Infrared Channels in Infrared Multi-spectral Images. Chinese Patent 202211573685.X, 12 April 2023. (In Chinese). [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An INtroduction to himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.; Kikuchi, M.; Sekiyama, T.; Murakami, H.; Tanaka, T.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Chen, T.; Li, Z.; Kahn, R.A.; Zhao, C.; Rosenfeld, D.; Guo, J.; Han, W.; Chen, D. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmos. Meas. Tech. 2021, 21, 6199–6220. [Google Scholar] [CrossRef]
- GB/T 20480-2017; Classification of Sand and Dust Weather. National Standard of the People’s Republic of China: Beijing, China, 2017. Available online: https://www.cma.gov.cn/zfxxgk/gknr/flfgbz/bz/202209/t20220921_5098367.html (accessed on 4 April 2023).
- Yan, H.; Hou, Y.Y.; Liu, G.Q.; He, Y.B. Dust Detection Using Thermal Infrared Temperature Difference. J. Remote Sens. 2004, 8, 471–474. (In Chinese) [Google Scholar] [CrossRef]
- Baddock, M.C.; Bullard, J.E.; Bryant, R.G. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 2009, 113, 1511–1528. [Google Scholar] [CrossRef]
- Hu, X.Q.; Lu, N.M.; Niu, T.; Zhang, P. Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys. 2008, 8, 1649–1659. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, D.; Li, Y.; Chen, T.; Wu, Q. Variation of PM2.5 Concentration during Two Dust Pollution Events in Beijing. Clim. Environ. Res. 2016, 21, 78–86. (In Chinese) [Google Scholar]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, C.; Xie, Y. Dust Detection and Intensity Estimation Using Himawari-8/AHI Observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Huang, J. Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements. J. Meteorol. Res. 2014, 28, 185–198. [Google Scholar] [CrossRef]
Date and Time 21 March 2023 | Longitude and Latitude/Station Name | |||||
---|---|---|---|---|---|---|
102.36, 41.36/ Guaizihu | 102.87, 37.20/ Wuwei | 99.62, 38.83/ Sunan | 111.94, 43.61/ Erlianhot | 112.59, 42.76/ Sunit-Right-Banner | 106.44, 41.39/ Hailisu | |
10:00 | 1.99 | 2.09 | 1.99 | 5.17 | 3.54 | 2.79 |
11:00 | 1.85 | 1.97 | 1.87 | 4.48 | 3.92 | 2.69 |
12:00 | 1.80 | 2.10 | 1.73 | 4.69 | 4.82 | 2.58 |
13:00 | 1.85 | / | 2.05 | 3.74 | 5.29 | 3.31 |
14:00 | 1.77 | / | / | 4.26 | 5.04 | 2.99 |
Ground observation at 12:00 | No dust | FD or BS | No dust | SS | SSS | FD or BS |
Satellite identification result at 12:00 | FD or BS | FD or BS | FD or BS | SS | SS | FD or BS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; An, L.; Wang, F.; Wu, G.; Wen, J.; Li, B.; Jin, Y.; Wei, Y. Identification Method for Spring Dust Intensity Levels Based on Multiple Remote Sensing Parameters. Remote Sens. 2024, 16, 2606. https://doi.org/10.3390/rs16142606
Jiang Q, An L, Wang F, Wu G, Wen J, Li B, Jin Y, Wei Y. Identification Method for Spring Dust Intensity Levels Based on Multiple Remote Sensing Parameters. Remote Sensing. 2024; 16(14):2606. https://doi.org/10.3390/rs16142606
Chicago/Turabian StyleJiang, Qi, Linchang An, Fei Wang, Guozhou Wu, Jianwei Wen, Bin Li, Yuchen Jin, and Yapeng Wei. 2024. "Identification Method for Spring Dust Intensity Levels Based on Multiple Remote Sensing Parameters" Remote Sensing 16, no. 14: 2606. https://doi.org/10.3390/rs16142606