A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan
<p>Schematic of the interferometer hardware at one station.</p> "> Figure 2
<p>Antenna site map of InLMA, DALMA, and FALMA with the filling color representing the height above sea level.</p> "> Figure 3
<p>Illustration of three station InLMA with an assumed point discharge source <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> which radiates electromagnetic waves to the three stations. The corresponding angles are denoted and used to find the 3D location of the source <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>(<b>a</b>) Flow chart used in 3D mapping program; (<b>b</b>) Description of the method for finding the time arrival differences windows between two stations.</p> "> Figure 5
<p>E-field change recorded at one station of FALMA. (<b>a</b>) 1 s of waveform; (<b>b</b>) waveform from 44 ms to 58 ms including two preliminary breakdowns; (<b>c</b>) waveform of the return stroke; (<b>d</b>–<b>f</b>) Expanded waveforms to indicate the 1st preliminary breakdown stages and the 2nd preliminary breakdown and return stroke in detail. The “atmospheric electricity” sign convention is used.</p> "> Figure 6
<p>3D mapping result of the lightning flash by DALMA color-coded in time. Three pentagrams represent stations of InLMA. (<b>a</b>) 3D mapping; (<b>b</b>) Top view.</p> "> Figure 7
<p>Example waveform and frequency spectrum of the raw lightning data recorded at one channel of InLMA. (<b>a</b>) Signal waveform and background noise; (<b>b</b>,<b>d</b>,<b>f</b>) Frequency spectrum of the flash signal; (<b>c</b>,<b>e</b>,<b>g</b>) Frequency spectrum of the noise.</p> "> Figure 8
<p>2D result from station 3 of InLMA. (<b>a</b>) Azimuth result with InLMA waveform versus time; (<b>b</b>) Elevation result with E-field change versus time; (<b>c</b>) 2D view of azimuth versus elevation with two branches, 1 and 2, identified.</p> "> Figure 9
<p>A comparison between 3D mapping results of InLMA and DALMA for the initial 10 ms of the flash. (<b>a</b>) 3D mapping of InLMA with locations of three stations of InLMA. (<b>b</b>) 3D location result from DALMA.</p> "> Figure 10
<p>A comparison between the 3D heights mapped by InLMA and DALMA along with the corresponding E-field change.</p> "> Figure 11
<p>Mapping results for the PB pulses occurred during the initial 1 ms stage. (<b>a</b>) 3D mapping by InLMA along with the E-field change. The pulses numbered from one to seven have a simple structure and will be studied further next; (<b>b</b>) Azimuth versus time for all three InLMA stations; (<b>c</b>) Elevation versus time for all three InLMA stations.</p> "> Figure 12
<p>The raw InLMA data (top panel in orange), the 3 MHz~30 MHz, 30 MHz~80 MHz, and 80 MHz~230 MHz bandpass data (the second, the third, and the fourth panels), and the corresponding azimuth and elevation (the fifth or the bottom panel in red and blue, respectively) along with the E-field change (top panel in blue) with (<b>a</b>) for pulse 1, (<b>b</b>) for pulses 2 and 3, (<b>c</b>) for pulse 4, and (<b>d</b>) for pulses 5, 6, and 7.</p> "> Figure 13
<p>2D mapping result of the discharge processes around the positive return stroke. (<b>a</b>) Azimuth and InLMA raw waveform; (<b>b</b>) Elevation and FALMA E-field change (<b>c</b>) 2D vertical view of elevation versus azimuth. Black points are all discharge sources occurring during the period from lightning initiation until 62.2 ms later; color points coded in time are the discharge sources during the period around the positive return stroke. Two clusters are circled with red dotted lines, with cluster 1 occurring before the return stroke, likely due to the downward positive leader of the stroke, while cluster 2 occurs at the initial stage of the return stroke.</p> ">
Abstract
:1. Introduction
2. Instrumentation and Methods
3. Observation and Data
4. Preliminary Results
4.1. 2D Mapping Using Individual Stations
4.2. 3D Mapping by Using 3 Stations
4.3. An Attempt to Better Characterize Preliminary Breakdowns
4.4. An Attempt to Characterize the Positive Return Stroke
5. Discussion and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Wu, T.; Takagi, N. Charge Structure of Winter Thunderstorm in Japan: A Review and an Update. IEEJ Trans. Power Energy 2018, 138, 310–314. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, D.; Zhang, Y.; Wu, T.; Takagi, N. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos. 2019, 124, 7179–7206. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Yang, J.; Wu, T.; Takagi, N. Complicated aspects of a CG lightning flash observed in winter storm in Japan. J. Atmos. Electr. 2022, 41, 11–29. [Google Scholar] [CrossRef]
- Wang, D.; Wu, T.; Huang, H.; Yang, J.; Yamamoto, K. 3D Mapping of Winter Lightning in Japan with an Array of Discone Antennas. IEEJ Trans. Electr. Electron. Eng. 2022, 7, 1606–1612. [Google Scholar] [CrossRef]
- Stock, M.G.; Akita, M.; Krehbiel, P.R.; Rison, W.; Edens, H.E.; Kawasaki, Z.; Stanley, M.A. Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. J. Geophys. Res. Atmos. 2014, 119, 3134–3165. [Google Scholar] [CrossRef]
- Warwick, J.W.; Hayenga, C.O.; Brosnahan, J.W. Interferometric directions of lightning sources at 34 MHz. J. Geophys. Res. Atmos. 1979, 84, 2457. [Google Scholar] [CrossRef]
- Rhodes, C.T.; Shao, X.M.; Krehbiel, P.R.; Thomas, R.J.; Hayenga, C.O. Observations of lightning phenomena using radio interferometry. J. Geophys. Res. Atmos. 1994, 99, 13059–13082. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.M.; Holden, D.N.; Rhodes, C.T. Broad band radio interferometry for lightning observations. Geophys. Res. Lett. 1996, 23, 1917–1920. [Google Scholar] [CrossRef]
- Ushio, T.-O.; Kawasaki, Z.-I.; Ohta, Y.; Matsuura, K. Broad band interferometric measurement of rocket triggered lightning in Japan. Geophys. Res. Lett. 1997, 24, 2769–2772. [Google Scholar] [CrossRef]
- Akita, M.; Stock, M.; Kawasaki, Z.; Krehbiel, P.; Rison, W.; Stanley, M. Data processing procedure using distribution of slopes of phase differences for broadband VHF interferometer. J. Geophys. Res. Atmos. 2014, 119, 6085–6104. [Google Scholar] [CrossRef]
- Yoshida, S.; Biagi, C.J.; Rakov, V.A.; Hill, J.D.; Stapleton, M.V.; Jordan, D.M.; Uman, M.A.; Morimoto, T.; Ushio, T.; Kawasaki, Z.-I. Three-dimensional imaging of upward positive leaders in triggered lightning using VHF broadband digital interferometers. Geophys. Res. Lett. 2010, 37, L05805. [Google Scholar] [CrossRef]
- Liu, H.; Dong, W.; Wu, T.; Zheng, D.; Zhang, Y. Observation of compact intracloud discharges using VHF broadband interferom-eters. J. Geophys. Res. Atmos. 2012, 117, D01203. [Google Scholar]
- Jensen, D.P.; Sonnenfeld, R.G.; Stanley, M.A.; Edens, H.E.; da Silva, C.L.; Krehbiel, P.R. Dart-leader and k-leader velocity from initiation site to termination time-resolved with 3d interferometry. J. Geophys. Res. Atmos. 2021, 126, e2020JD034309. [Google Scholar] [CrossRef]
- Thyer, N. Double Theodolite Pibal Evaluation by Computer. J. Appl. Meteorol. 1962, 1, 66–68. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, S.; Dong, W. The Three-Dimensional Locating of VHF Broadband Lightning Interferometers. Atmosphere 2018, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Mardiana, R.; Kawasaki, Z.-I.; Morimoto, T. Three-dimensional lightning observations of cloud-to-ground flashes using broadband interferometers. J. Atmos. Sol.-Terr. Phys. 2002, 64, 91–103. [Google Scholar] [CrossRef]
- Wang, D.; Takagi, N. Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan. IEEJ Trans. Power Energy 2012, 132, 568–572. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Lightning Mapping with an Array of Fast Antennas. Geophys. Res. Lett. 2018, 45, 3698–3705. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Upward Negative Leaders in Positive Upward Lightning in Winter: Propagation Velocities, Electric Field Change Waveforms, and Triggering Mechanism. J. Geophys. Res. Atmos. 2020, 125, e2020JD032851. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; Qin, Z.; Chen, M. Lightning Initiation Processes Imaged with Very High Frequency Broadband Interferometry. J. Geophys. Res. Atmos. 2019, 124, 2994–3004. [Google Scholar] [CrossRef]
- Shao, X.M.; Ho, C.; Bowers, G.; Blaine, W.; Dingus, B. Lightning interferometry uncertainty, beam steering interferometry, and ev-idence of lightning being ignited by a cosmic ray shower. J. Geophys. Res. Atmos. 2020, 125, e2019JD032273. [Google Scholar] [CrossRef]
- Yin, W.; Jin, W.; Zhou, C.; Liu, Y.; Tang, Q.; Liu, M.; Chen, G.; Zhao, Z. Lightning detection and imaging based on VHF radar inter-ferometry. Remote Sens. 2021, 13, 2065. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Takagi, N. Multiple-stroke positive cloud-to-ground lightning observed by the FALMA in winter thunderstorms in Japan. J. Geophys. Res. Atmos. 2020, 125, e2020JD033039. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Huang, H.; Wu, T.; Takagi, N.; Yamatomo, K. Development of an Interferometer-type Lightning Mapping Array System. In Proceedings of the 2022 36th International Conference on Lightning Protection (ICLP), Cape Town, South Africa, 2–7 October 2022; pp. 350–353. [Google Scholar]
- Wu, T.; Takayanagi, Y.; Funaki, T.; Yoshida, S.; Ushio, T.; Kawasaki, Z.-I.; Morimoto, T.; Shimizu, M. Preliminary breakdown pulses of cloud-to-ground lightning in winter thunderstorms in Japan. J. Atmos. Sol.-Terr. Phys. 2013, 102, 91–98. [Google Scholar] [CrossRef]
- Wu, T.; Yoshida, S.; Akiyama, Y.; Stock, M.; Ushio, T.; Kawasaki, Z. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation. J. Geophys. Res. Atmos. 2015, 120, 9071–9086. [Google Scholar] [CrossRef] [Green Version]
- Marshall, T.; Bandara, S.; Karunarathne, N.; Karunarathne, S.; Kolmasova, I.; Siedlecki, R.; Stolzenburg, M. A study of lightning flash initiation prior to the first initial breakdown pulse. Atmos. Res. 2018, 217, 10–23. [Google Scholar] [CrossRef]
- Shi, D.; Wang, D.; Wu, T.; Takagi, N. Temporal and Spatial Characteristics of Preliminary Breakdown Pulses in Intracloud Lightning Flashes. J. Geophys. Res. Atmos. 2019, 124, 12901–12914. [Google Scholar] [CrossRef]
- Kolmasova, I.; Marshall, T.; Bandara, S.; Karunarathne, S.; Stolzenburg, M.; Karunarathne, N.; Siedlecki, R. Initial Breakdown Pulses Accompanied by VHF Pulses During Negative Cloud-to-Ground Lightning Flashes. Geophys. Res. Lett. 2019, 46, 5592–5600. [Google Scholar] [CrossRef]
- Rison, W.; Krehbiel, P.R.; Stock, M.G.; Edens, H.E.; Shao, X.-M.; Thomas, R.J.; Stanley, M.A.; Zhang, Y. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [Green Version]
- Stock, M.G.; Krehbiel, P.R.; Lapierre, J.; Wu, T.; Stanley, M.A.; Edens, H.E. Fast positive breakdown in lightning. J. Geophys. Res. Atmos. 2017, 122, 8135–8152. [Google Scholar] [CrossRef]
- Tilles, J.N.; Liu, N.; Stanley, M.A.; Krehbiel, P.R.; Rison, W.; Stock, M.G.; Dwyer, J.R.; Brown, R.; Wilson, J. Fast negative breakdown in thunderstorms. Nat. Commun. 2019, 10, 1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.M.; Krehbiel, P.R.; Thomas, R.J.; Rison, W. Radio interferometric observations of cloud-to-ground lightning phenomena in Florida. J. Geophys. Res. Atmos. 1995, 100, 2749–2783. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, S.; Shi, L.; Wang, T.; Zhang, Q.; Lei, Q.; Sun, Z. Observed Variation of Three-Dimensional Return Stroke Speeds Along the Channel in Rocket-Triggered Lightning. Geophys. Res. Lett. 2018, 45, 12569–12575. [Google Scholar] [CrossRef]
- Idone, V.P.; Orville, R.E. Lightning return stroke velocities in the thunderstorm research international program (TRIP). J. Geophys. Res. Atmos. 1982, 87, 4903–4916. [Google Scholar] [CrossRef]
- Jordan, D.M.; Rakov, V.A.; Beasley, W.H.; Uman, M.A. Luminosity characteristics of dart leaders and return strokes in natural lightning. J. Geophys. Res. Atmos. 1997, 102, 22025–22032. [Google Scholar] [CrossRef]
- Wang, D.; Takagi, N.; Watanabe, T.; Rakov, V.A.; Uman, M.A. Observed leader and return-stroke propagation characteristics in the bottom 400 m of a rocket-triggered lightning channel. J. Geophys. Res. Atmos. 1999, 104, 14369–14376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, D.; Huang, H.; Wu, T.; Takagi, N.; Yamamoto, K. A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan. Remote Sens. 2023, 15, 1923. https://doi.org/10.3390/rs15071923
Yang J, Wang D, Huang H, Wu T, Takagi N, Yamamoto K. A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan. Remote Sensing. 2023; 15(7):1923. https://doi.org/10.3390/rs15071923
Chicago/Turabian StyleYang, Junchen, Daohong Wang, Haitao Huang, Ting Wu, Nobuyuki Takagi, and Kazuo Yamamoto. 2023. "A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan" Remote Sensing 15, no. 7: 1923. https://doi.org/10.3390/rs15071923
APA StyleYang, J., Wang, D., Huang, H., Wu, T., Takagi, N., & Yamamoto, K. (2023). A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan. Remote Sensing, 15(7), 1923. https://doi.org/10.3390/rs15071923