Assimilation of Water Vapor Retrieved from Radar Reflectivity Data through the Bayesian Method
<p>Flowchart of the sequence of operations of water vapor retrieval and assimilation.</p> "> Figure 2
<p>(<b>a</b>) The model forecast domains and observations assimilated. The outside box indicates domain 1, and the inner black box indicates domain 2. The red dots indicate SYNOP stations. (<b>b</b>) The radar station and radar data assimilated available range in domain 2. The location of Wenquan national meteorological station, west of Bole’s radar, is represented by the back cross marker which is same below. The black dots show the locations of the nine radar stations. The altitude (unit m) of ground above sea level is represented by the colour shades.</p> "> Figure 3
<p>Flowcharts of spin-up, data assimilation, and forecast for the (<b>a</b>) convective case and (<b>b</b>) continuous monthly experiments.</p> "> Figure 4
<p>The single reflectivity (unit dBZ) observation test of the relative humidity (unit %) retrieved at 12th model level. (<b>a</b>) Assimilated reflectivity. (<b>b</b>) Observed reflectivity. (<b>c</b>) Weight of each assimilated reflectivity. (<b>d</b>) Assimilated relative humidity. (<b>e</b>) Relative humidity retrieved using the updated scheme. (<b>f</b>) Relative humidity retrieved using the original scheme. The black square indicates the window of 21 × 21 grid points used for the Bayesian method. The red square indicates the single reflectivity observation point.</p> "> Figure 5
<p>Environmental conditions with the geopotential height (unit gpm, blue lines), wind vector (unit m/s, wind bars), temperature (unit °C, red lines) at 500 hPa, and relative humidity (unit %, colour shades) at 750 hPa at (<b>a</b>) 0000 UTC, (<b>b</b>) 0600 UTC 30 July 2019 from NCEP-FNL.</p> "> Figure 6
<p>Observed composite reflectivity fields (unit dBZ) at (<b>a</b>) 0700 UTC, (<b>b</b>) 0730 UTC, (<b>c</b>) 0800 UTC, (<b>d</b>) 0820 UTC, (<b>e</b>) 0840 UTC, and (<b>f</b>) 0900 UTC 30 July 2019. The black squares indicate the reflectivity assimilated, in which observed radar reflectivity is higher than 25 dBZ which is same below. The shades of gray indicate the model terrain height in each plot which is same below.</p> "> Figure 7
<p>Horizontal and vertical cross-sections of assimilated composite reflectivity fields (unit dBZ) from (<b>a</b>) C2Rad for 1-h forecasts beginning at 0700 UTC 30 July 2019. The wind vector (unit m/s, black arrows) is calculated by u and w wind in which w speed is multiplied by 10.0 in (<b>b</b>,<b>c</b>) which is the same below. The red triangle in each plot of vertical cross-sections indicates the location of Wenquan station. The red lines indicate vertical cross-sections through AB and CD. The color points indicate the vertical distribution of observed reflectivity fields (unit dBZ).</p> "> Figure 8
<p>Vertical cross-section of the analysis and the increment of water vapor (unit g/kg) along line AB at 0800 UTC. (<b>a</b>) The analysis from C2Rad. (<b>b</b>) The analysis from C2RadBy. (<b>c</b>) The increment from C2Rad. (<b>d</b>) The increment from C2RadBy. (<b>e</b>) The difference of increment between C2Rad and C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red lines indicate the increment of temperature (unit 0.001 °C). The dashed blue lines indicate negative divergence (unit 1/s).</p> "> Figure 9
<p>Vertical cross-section of the analysis and the increment of water vapor (unit g/kg) along line CD at 0800 UTC. (<b>a</b>) The analysis from C2Rad. (<b>b</b>) The analysis from C2RadBy. (<b>c</b>) The increment from C2Rad. (<b>d</b>) The increment from C2RadBy. (<b>e</b>) The difference of increment between C2Rad and C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red lines indicate the increment of temperature (unit 0.001 °C). The dashed blue lines indicate negative divergence (unit 1/s).</p> "> Figure 10
<p>Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at 0800 UTC at 3000m. (<b>a</b>) The analysis from C2Rad. (<b>b</b>) The analysis from C2RadBy. (<b>c</b>) The increment from C2Rad. (<b>d</b>) The increment from C2RadBy. (<b>e</b>) The difference of increment between C2Rad and C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red lines indicate the increment of temperature (unit 0.001 °C). The dashed blue lines indicate the analysis of negative divergence (unit 1/s). The ellipse of dashed red lines indicates the main areal coverage of precipitation which is the same below.</p> "> Figure 11
<p>Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at 0800 UTC at 5000 m. (<b>a</b>) The analysis from C2Rad. (<b>b</b>) The analysis from C2RadBy. (<b>c</b>) The increment from C2Rad. (<b>d</b>) The increment from C2RadBy. (<b>e</b>) The difference of increment between C2Rad and C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red lines indicate the increment of temperature (unit 0.001 °C). The dashed blue lines indicate the analysis of negative divergence (unit 1/s).</p> "> Figure 12
<p>Horizontal cross-section of the analysis and the increment of water vapor (unit g/kg) at 0800 UTC at7000 m. (<b>a</b>) The analysis from C2Rad. (<b>b</b>) The analysis from C2RadBy. (<b>c</b>) The increment from C2Rad. (<b>d</b>) The increment from C2RadBy. (<b>e</b>) The difference of increment between C2Rad and C2RadBy. The shades in each plot indicate the water vapor mixing ratio (unit g/kg). The solid red lines indicate the increment of temperature (unit 0.001 °C). The dashed blue lines indicate the analysis of negative divergence (unit 1/s).</p> "> Figure 13
<p>The increment and difference of precipitable water (PW, unit mm) and convective available potential energy (CAPE, unit J/kg) at 0800 UTC 30 July 2019. (<b>a</b>) The increment of PW from C2Rad. (<b>b</b>) The increment of PW from C2RadBy. (<b>c</b>) The difference of PW between (<b>a</b>,<b>b</b>). (<b>d</b>) The increment of CAPE from C2RadBy. (<b>e</b>) The increment of CAPE from C2RadBy. (<b>f</b>) The difference of CAPE between (<b>d</b>,<b>e</b>).</p> "> Figure 14
<p>Hourly accumulated precipitation of (<b>a</b>) C1Con, (<b>b</b>) C1Rad, and (<b>c</b>) C3RadBy at 0900 UTC. The colored dots show the locations and hourly accumulated precipitation (in millimeters) of observations of SYNOP. The Forecast hourly accumulated precipitation (unit mm) is represented by the colour shades.</p> "> Figure 15
<p>Taylor diagrams of the hourly accumulated precipitation forecast at 0900 UTC from 30 July 2019. The triangle and circle indicate the increased percentage of ETS relative to C1Con or E1Con which is the same below.</p> "> Figure 16
<p>Diagnostic plots of water vapor (unit g/kg). (<b>a</b>) Scatter distribution of water vapor mixing ratio between analysis and background. (<b>b</b>) QQ distribution of water vapor mixing ratio. (<b>c</b>) The distribution of the analysis increment at different altitudes (unit m) of ground above sea level. (<b>d</b>) PDF distribution of the analysis increment. The blue lines and circles indicate E3RadBy, and the red lines and circles indicate E2Rad.</p> "> Figure 17
<p>Taylor diagrams of the six hours accumulated precipitation forecast at 1800 UTC from 1 July to 31 July 2019.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Water Vapor Retrieval
2.2. Radar Reflectivity Assimilation
3. Model and Experimental Design
3.1. Model Configuration
3.2. Data Used for Assimilation and Validation
3.3. Experimental Design
4. Result
4.1. Test of Single Reflectivity Observation
4.2. 30 July 2019 Case
4.3. Continuous Monthly Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Shapiro, A.; Droegemeier, K.K. A variational analysis for the retrieval of three-dimensional mesoscale wind fields from two Doppler radars. Mon. Weather Rev. 1999, 127, 2128–2142. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Brewster, K.; Droegemeier, K.K. A three-dimensional data analysis method with recursive filter for Doppler radars. J. Atmos. Ocean. Technol. 2004, 21, 457–469. [Google Scholar] [CrossRef]
- Sun, J. Convective-scale assimilation of radar data: Progress and challenges. Q. J. R. Meteorol. Soc. J. Atmos.Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 3439–3463. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M.; Brewster, K. 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Weather Rev. 2006, 134, 675–698. [Google Scholar] [CrossRef]
- Tong, C.C. Limitations and Potential of Complex Cloud Analysis and Its Improvement for Radar Reflectivity Data Assimilation Using OSSES. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2015. [Google Scholar]
- Xue, M.; Wang, D.; Gao, J.; Brewster, K.A.; Droegemeier, K.K. The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorol. Atmos. Phys. 2003, 82, 139–170. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Gao, J.; Smith, T.M.; Stensrud, D.J.; Fu, C.; Calhoun, K.; Manross, K.L.; Brogden, J.; Lakshmanan, V.; Wang, Y.; Thomas, K.W.; et al. A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Weather Forecast. 2013, 28, 727–745. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Fan, S.; Huang, X.Y. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective eventsss. J. Appl. Meteorol. Climatol. 2013, 52, 889–902. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Zhang, X.; Huang, X.Y.; Auligne, T. Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Weather Rev. 2013, 141, 2224–2244. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, J. Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Weather Rev. 2007, 135, 3381–3404. [Google Scholar] [CrossRef]
- Aksoy, A.; Dowell, D.C.; Snyder, C. A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Weather Rev. 2009, 137, 1805–1824. [Google Scholar] [CrossRef] [Green Version]
- Dowell, D.C.; Wicker, L.J.; Snyder, C. Ensemble Kalman filter assimilation of radar obervations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Weather Rev. 2011, 139, 272–294. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Fu, C.; Stensrud, D.J.; Kain, J.S. OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci. 2016, 73, 2403–2426. [Google Scholar] [CrossRef]
- Lai, A.; Gao, J.; Koch, S.E.; Wang, Y.; Pan, S.; Fierro, A.O.; Cui, C.; Min, J. Assimilation of Radar Radial Velocity, Reflectivity, and Pseudo–Water Vapor for Convective-Scale NWP in a Variational Framework. Mon. Weather Rev. 2019, 147, 2877–2900. [Google Scholar] [CrossRef]
- Albers, S.C.; McGinley, J.A.; Birkenheuer, D.L.; Smart, J.R. The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Weather Forecast. 1996, 11, 273–287. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.L. Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Weather Rev. 2013, 141, 2245–2264. [Google Scholar] [CrossRef]
- Schenkman, A.D.; Ming, X.; Shapiro, A.; Brewster, K.; Gao, J. The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilation WSR-88D and CASA radar data using 3DVAR. Mon. Weather Rev. 2011, 139, 224–246. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.J.; Xue, M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Weather Rev. 2005, 133, 1789–1807. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q. Generalized adjoint for physical processes with parameterized discontinuities. Part I: Basic issues and heuristic examples. J. Atmos. Sci. 1996, 53, 1123–1142. [Google Scholar] [CrossRef]
- Ge, G.; Gao, J.; Xue, M. Impacts of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method. Mon. Weather Rev. 2013, 141, 2759–2777. [Google Scholar] [CrossRef] [Green Version]
- Walbröl, A.; Crewell, S.; Engelmann, R.; Orlandi, E.; Griesche, H.; Radenz, M.; Hofer, J.; Althausen, D.; Maturilli, M.; Ebell, K. Atmospheric temperature, water vapor and liquid water path from two microwave radiometers during MOSAiC. Sci. Data 2022, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Shikhovtsev, A.Y.; Khaikin, V.B.; Mironov, A.P.; Kovadlo, P.G. Statistical Analysis of the Water Vapor Content in North Caucasus and Crimea. Atmos. Ocean Opt. 2022, 35, 168–175. [Google Scholar] [CrossRef]
- Philipona, R.; Kräuchi, A.; Kivi, R.; Peter, T.; Wild, M.; Dirksen, R.; Fujiwara, M.; Sekiguchi, M.; Hurst, D.F.; Becker, R. Balloon-borne radiation measurements demonstrate radiative forcing by water vapor and clouds. Meteorol. Z. 2020, 29, 501–509. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Z.; Liu, P.; Zhang, F. Impact of Water Vapor on the Development of a Supercell Over Eastern China. Front. Earth Sci. 2022, 10, 881579. [Google Scholar] [CrossRef]
- Caumont, O.; Ducrocq, V.; Wattrelot, E.; Jaubert, G.; Pradier-Vabre, S. 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus 2010, 62A, 173–187. [Google Scholar] [CrossRef]
- Wattrelot, E.; Caumont, O.; Mahfouf, J.F. Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Weather Rev. 2014, 142, 1852–1873. [Google Scholar] [CrossRef] [Green Version]
- Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; McCollum, J.; Ferraro, R.; Petty, G.; Shin, D.B.; Wilheit, T.T. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor. 2001, 40, 1801–1820. [Google Scholar] [CrossRef]
- Olson, W.S.; Kummerow, C.D.; Heymsfield, G.M.; Giglio, L. A method for combined passive-active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor. 1996, 35, 1763–1789. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteor. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A. A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech. Note 2003, 68. [Google Scholar]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Bannister, R.N. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Q. J. R.Meteor. Soc. 2008, 134, 1971–1996. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 15 August 2021).
- National Center for Atmospheric Research. The Research Data Archive. Available online: https://rda.ucar.edu/datasets/ (accessed on 10 August 2021).
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- National Meteorological Information Center. China Meteorological Data Sharing Service System. Available online: http://data.cma.cn/ (accessed on 23 August 2021).
- Peng, L.; Yang, Y.; Xin, Y.; Wang, C. Impact of Lightning Data Assimilation on Forecasts of a Leeward Slope Precipitation Event in the Western Margin of the Junggar Basin. Remote Sens. 2021, 13, 3584. [Google Scholar] [CrossRef]
- Clark, A.J.; Xue, M.; Weisman, M.L. Neighborhood based verification of precipitation forecasts from convection allowing NCAR WRF Model simulations and the operational NAM. Weather Forecast. 2010, 25, 1495–1509. [Google Scholar] [CrossRef]
Model and Configurations | |
---|---|
Version | v3.9.1, nonhydrostatic = true |
Domain 1 | 712 × 532, nominal 9 km |
Domain 2 | 832 × 652, nominal 3 km |
Vertical computation layers | 50 |
Pressure top | 10 hPa |
Lateral boundary conditions | NCEP-FNL |
Microphysics | WSM6 |
Longwave radiation | RRTMG |
Shortwave radiation | RRTMG |
Land surface | Unified Noah land-surface model |
Deep convection | Kain–Fritsch |
Planetary-boundary and surface layer | ACM2 |
Experiments | Observations | Pseudo Water Vapor | |
---|---|---|---|
30 July 2019 case | C1Con | Domain 1: SYNOP Domain 2: SYNOP + radar radial velocity | _ |
C2Rad | Domain 1: SYNOP Domain 2: SYNOP + radar radial velocity + reflectivity | The original scheme: , With , . | |
C3RadBy | Same as C2Rad | The updated scheme: , With . | |
July 2019 Continuous experiments | E1Con | Same as C1Con | _ |
E2Rad | Same as C2Rad | Same as C2Rad | |
E3RadBy | Same as C2Rad | Same as C3RadBy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Fan, S.; Ali, M.; Li, H.; Zhang, H.; Wang, Y.; Aihaiti, A. Assimilation of Water Vapor Retrieved from Radar Reflectivity Data through the Bayesian Method. Remote Sens. 2022, 14, 5897. https://doi.org/10.3390/rs14225897
Liu J, Fan S, Ali M, Li H, Zhang H, Wang Y, Aihaiti A. Assimilation of Water Vapor Retrieved from Radar Reflectivity Data through the Bayesian Method. Remote Sensing. 2022; 14(22):5897. https://doi.org/10.3390/rs14225897
Chicago/Turabian StyleLiu, Junjian, Shuiyong Fan, Mamtimin Ali, Huoqing Li, Hailiang Zhang, Yu Wang, and Ailiyaer Aihaiti. 2022. "Assimilation of Water Vapor Retrieved from Radar Reflectivity Data through the Bayesian Method" Remote Sensing 14, no. 22: 5897. https://doi.org/10.3390/rs14225897
APA StyleLiu, J., Fan, S., Ali, M., Li, H., Zhang, H., Wang, Y., & Aihaiti, A. (2022). Assimilation of Water Vapor Retrieved from Radar Reflectivity Data through the Bayesian Method. Remote Sensing, 14(22), 5897. https://doi.org/10.3390/rs14225897