Study of the Buried Basin C-H, Based on the Multi-Source Remote Sensing Data
"> Figure 1
<p>Copernicus crater and the surrounding area. (<b>a</b>) Copernicus area on a LROC WAC Global Morphology Mosaic; (<b>b</b>) Copernicus area on a LROC WAC DTM GLD100; (<b>c</b>) Copernicus area on a “Unified Geologic Map of the Moon, 1:5M, 2020”.</p> "> Figure 2
<p>Bouguer gravity of the Copernicus area.</p> "> Figure 3
<p>Previous studies of the C-H basin, as shown on the LROC WAC Global Morphology Mosaic. Blue circles from Neumann et al. [<a href="#B16-remotesensing-14-05284" class="html-bibr">16</a>]; pink circles from Evans et al. [<a href="#B13-remotesensing-14-05284" class="html-bibr">13</a>]; orange circle from Liu et al. [<a href="#B24-remotesensing-14-05284" class="html-bibr">24</a>].</p> "> Figure 4
<p>Surviving rim on the basin rim, as given by Neumann. The elevations are from the LOLA-SELENE Kaguya TC DEM.</p> "> Figure 5
<p>Geology map of the Copernicus area showing the linear rilles and mare ridges.</p> "> Figure 6
<p>Bouguer gravity anomaly CSFD dating. (<b>a</b>) Primary craters (red) and secondary craters (yellow) in the intersection of the Copernicus ejecta and the Bouguer gravity anomaly (blue); (<b>b</b>) Differential crater frequency and geologic time of the Bouguer gravity anomaly.</p> "> Figure 7
<p>Copernicus ejecta CSFD dating. (<b>a</b>) Primary craters (red) and secondary craters (yellow) in the intersection of the Copernicus ejecta; (<b>b</b>) Differential crater frequency and geologic time of the Copernicus ejecta.</p> "> Figure 8
<p>Position of Copernicus H crater on the Kaguya TCortho Mosaic.</p> "> Figure 9
<p>Elevation Profile of Copernicus H from the LOLA-SELENE Kaguya TC DEM.</p> "> Figure 10
<p>Mineral maps of the OMAT and olivine of Copernicus H. (<b>a</b>) OMAT in Copernicus H; (<b>b</b>) Olivine values on Copernicus H.</p> "> Figure 11
<p>Position and the OMAT map of Sinus Aestuum-I DMD.</p> "> Figure 12
<p>Previous study results and the Imbrium basin, shown on the LROC WAC DTM GLD100. Blue circles from Neumann et al. [<a href="#B16-remotesensing-14-05284" class="html-bibr">16</a>]; pink circles from Evans et al. [<a href="#B13-remotesensing-14-05284" class="html-bibr">13</a>]; orange circle from Liu et al. White circles from Neumann et al. are rims of the Imbrium basin [<a href="#B24-remotesensing-14-05284" class="html-bibr">24</a>].</p> "> Figure 13
<p>Sinus Aestuum-Ⅰ DMD. (<b>a</b>) Sinus Aestuum-Ⅰ DMD on the Kaguya TCortho Mosaic, the red arrow points to the radial texture from Copernicus; (<b>b</b>) Geological map of the Sinus Aestuum-Ⅰ DMD; (<b>c</b>) Elevation of the Sinus Aestuum-I DMD; (<b>d</b>) Slope of the Sinus Aestuum-Ⅰ DMD.</p> "> Figure 14
<p>Aestuum Ⅰ DMD and the Sinus Aestuum-Ⅱ DMD. (<b>a</b>) Aestuum Ⅰ DMD and the Sinus Aestuum-Ⅱ DMD on the LROC WAC Global Morphology Mosaic; (<b>b</b>) Geology of the Aestuum Ⅰ DMD and the Sinus Aestuum-Ⅱ DMD.</p> "> Figure 15
<p>Olivine-bearing exposure in the northern wall of Copernicus. (<b>a</b>) Olivine-bearing exposure shown on the CE2 DOM G122; (<b>b</b>) Olivine map of the exposure.</p> "> Figure 16
<p>Two craters in the Sinus Aestuum-Ⅰ DMD. (<b>a</b>) Position of the craters on the Sinus Aestuum-Ⅰ DMD shown on the Kaguya TCortho Mosaic; (<b>b</b>) Crater A shown on the CE2 DOM G222; (<b>c</b>) Olivine map of Crater A; (<b>d</b>) Crater B shown on the CE2 DOM G222 and G223; (<b>e</b>) Olivine map of Crater B.</p> "> Figure 16 Cont.
<p>Two craters in the Sinus Aestuum-Ⅰ DMD. (<b>a</b>) Position of the craters on the Sinus Aestuum-Ⅰ DMD shown on the Kaguya TCortho Mosaic; (<b>b</b>) Crater A shown on the CE2 DOM G222; (<b>c</b>) Olivine map of Crater A; (<b>d</b>) Crater B shown on the CE2 DOM G222 and G223; (<b>e</b>) Olivine map of Crater B.</p> "> Figure 17
<p>Stadius crater on the geological map and the Kaguya TCortho Mosaic.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Gravity
2.3. Topography
2.4. Geochronology
2.5. Olivine Contents and OMAT
3. Results
3.1. Bouguer Gravity Anomaly
3.2. Morphology and Topography
3.3. Age
3.4. Mineral
4. Discussion
4.1. Confirmation and Characteristics of the C-H Basin
4.2. Age of the Sinus Aestuum-I DMD
4.3. Olivine Rich Strata in Copernicus H
4.4. Evolution of the C-H Basines
5. Conclusions
- The C-H basin’s basic parameters are updated and located in 7.2°N 18.2°W, with a rim 260 km in diameter and a peak-ring 130 km in diameter. It should be classified as peak-ring basin and divided into the high-relative-Bouguer-anomaly groups.
- The DEM and the spectral data on Copernicus H suggest that the thickness of Im2 in the C-H basin is 890 m. What’s more, the surface of the C-H basin is buried deeper than 890 m.
- The C-H basin impact event occurred earlier than 3.9 Ga, maybe during the Aitkennian Epoch [24]. Then, a Hawaiian-style eruption formed the Sinus Aestuum-I DMD. Soon, Im2 filled it in, from 3.8 Ga. In addition to the intrusive basalts, the ejecta from the Copernicus impact event in about 800 Ma and the weathering processes also cause the disappearance of the C-H basin’s rim from the lunar surface. The Bouguer gravity anomaly was formed by the mantle upwelling [20]. However, the lunar dynamo likely ceased sometime between 1.92 Ga–0.80 Ga [52], earlier than the formation of Copernicus. There was not enough heat for the mantle upwelling and formation. Therefore, the Copernicus crater does not have a “mascon” characteristic.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, Z.; Wang, X.; Hu, T.; Yang, J. Coarse-to-Fine Extraction of Small-Scale Lunar Impact Craters From the CCD Images of the Chang’E Lunar Orbiters. IEEE Trans. Geosci. Remote Sens. 2019, 57, 181–193. [Google Scholar] [CrossRef]
- Jia, M.N.; Di, K.C.; Yue, Z.Y.; Liu, B.; Wan, W.H.; Niu, S.L.; Liu, J.Z.; Cheng, W.M.; Lin, Y.T. Multi-scale morphologic investigation of craters in the Chang’ e-4 landing area. Icarus 2021, 355, 114164. [Google Scholar] [CrossRef]
- Robbins, S.J. A New Global Database of Lunar Impact Craters >1–2 km: 1. Crater Locations and Sizes, Comparisons With Published Databases, and Global Analysis. J. Geophys. Res. Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, B.; Xue, H.; Li, X.; Ma, J. An Improved Global Catalog of Lunar Impact Craters (≥1 km) With 3D Morphometric Information and Updates on Global Crater Analysis. J. Geophys. Res. Planets 2021, 126, e2020JE006728. [Google Scholar] [CrossRef]
- Hu, T.; Kang, Z.; Massironi, M.; Hiesinger, H.; van der Bogert, C.H.; Gamba, P.; Brunetti, M.T.; Melis, M.T. Geological evolution of the Sinus Iridum basin. Planet. Space Sci. 2020, 194, 105134. [Google Scholar] [CrossRef]
- Muller, P.M.; Sjogren, W.L. Mascons: Lunar Mass Concentrations. Science 1968, 161, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.U.; Yates, M.T. Mascons as structural relief on a lunar ‘moho’. J. Geophys. Res. 1970, 75, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Phillips, R.J.; Dvorak, J. The origin of lunar mascons: Analysis of the Bouguer gravity associated with Grimaldi. In Proceedings of the Conference on Multi-ring Basins: Formation and evolution, Houston, TX, USA, 10–12 November 1980; p. 91. [Google Scholar]
- Urey, H.C. Mascons and the History of the Moon. Science 1968, 162, 1408–1410. [Google Scholar] [CrossRef]
- Conel, J.E.; Holstrom, G.B. Lunar Mascons: A Near-Surface Interpretation. Science 1968, 162, 1403–1405. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C. The origin of the non-mare mascon gravity anomalies in lunar basins. Icarus 2013, 222, 159–168. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Binder, A.B.; Hood, L.L.; Kucinskas, A.B.; Sjogren, W.L.; Williams, J.G. Improved gravity field of the moon from lunar prospector. Science 1998, 281, 1476–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.J.; Soderblom, J.M.; Andrews-Hanna, J.C.; Solomon, S.C.; Zuber, M.T. Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria. Geophys. Res. Lett. 2016, 43, 2445–2455. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, A.N.; Neumann, G.A.; Head, J.W.; Wilson, L. GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon. Icarus 2019, 331, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Chappaz, L.; Melosh, H.J.; Howell, K.C.; Milbury, C.; Blair, D.M.; Zuber, M.T. Detection and characterization of buried lunar craters with GRAIL data. Icarus 2017, 289, 157–172. [Google Scholar] [CrossRef]
- Neumann, G.A.; Zuber, M.T.; Wieczorek, M.A.; Head, J.W.; Baker, D.M.H.; Solomon, S.C.; Smith, D.E.; Lemoine, F.G.; Mazarico, E.; Sabaka, T.J.; et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci. Adv. 2015, 1, e1500852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melosh, H.J.; Freed, A.M.; Johnson, B.C.; Blair, D.M.; Andrews-Hanna, J.C.; Neumann, G.A.; Phillips, R.J.; Smith, D.E.; Solomon, S.C.; Wieczorek, M.A.; et al. The Origin of Lunar Mascon Basins. Science 2013, 340, 1552–1555. [Google Scholar] [CrossRef]
- Montesi, L.G.J. Solving the Mascon Mystery. Science 2013, 340, 1535–1536. [Google Scholar] [CrossRef]
- Baker, D.M.H.; Head, J.W.; Phillips, R.J.; Neumann, G.A.; Bierson, C.J.; Smith, D.E.; Zuber, M.T. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation. Icarus 2017, 292, 54–73. [Google Scholar] [CrossRef]
- Klokočník, J.; Kostelecký, J.; Cílek, V.; Kletetschka, G.; Bezděk, A. Gravity aspects from recent gravity field model GRGM1200A of the Moon and analysis of magnetic data. Icarus 2022, 384, 115086. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Chen, S.; Zhu, B. Analyzing the Magnesium (Mg) Number of Olivine on the Lunar Surface and Its Geological Significance. Remote Sens. 2019, 11, 1544. [Google Scholar] [CrossRef]
- Bugiolacchi, R.; Mall, U.; Bhatt, M.; McKenna-Lawlor, S.; Banaszkiewicz, M.; Brønstad, K.; Nathues, A.; Søraas, F.; Ullaland, K.; Pedersen, R.B. An in-depth look at the lunar crater Copernicus: Exposed mineralogy by high-resolution near-infrared spectroscopy. Icarus 2011, 213, 43–63. [Google Scholar] [CrossRef] [Green Version]
- McCord, T.B.; Charette, M.P.; Johnson, T.V.; Lebofsky, L.A.; Pieters, C.; Adams, J.B. Lunar spectral types. J. Geophys. Res. 1972, 77, 1349–1359. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Yue, Z.; Zhang, L.; Wang, J.; Zhu, K. Characterization and interpretation of the global lunar impact basins based on remote sensing. Icarus 2022, 378, 114952. [Google Scholar] [CrossRef]
- Goossens, S.; Sabaka, T.J.; Wieczorek, M.A.; Neumann, G.A.; Mazarico, E.; Lemoine, F.G.; Nicholas, J.B.; Smith, D.E.; Zuber, M.T. High-Resolution Gravity Field Models from GRAIL Data and Implications for Models of the Density Structure of the Moon’s Crust. J. Geophys. Res. Planets 2020, 125, e2019JE006086. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Lemelin, M.; Lucey, P.G.; Gaddis, L.R.; Hare, T.; Ohtake, M. Global Map Products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO, and OMAT. In Proceedings of the 47th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 2994. [Google Scholar]
- Dhingra, D.; Pieters, C.M.; Head, J.W. Multiple origins for olivine at Copernicus crater. Earth Planet. Sci. Lett. 2015, 420, 95–101. [Google Scholar] [CrossRef]
- Lucey, P.G. Mineral maps of the Moon. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Taylor, G.J.; Hawke, B.R. Imaging of lunar surface maturity. J. Geophys. Res. 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
- Fortezzo, C.M.; Spudis, P.D.; Harrel, S.L. Release of the Digital Unified Global Geologic Map of the Moon at 1:5,000,000-Scale. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; p. 2760. [Google Scholar]
- Konopliv, A.S.; Park, R.S.; Yuan, D.-N.; Asmar, S.W.; Watkins, M.M.; Williams, J.G.; Fahnestock, E.; Kruizinga, G.; Paik, M.; Strekalov, D.; et al. High-resolution lunar gravity fields from the GRAIL Primary and Extended Missions. Geophys. Res. Lett. 2014, 41, 1452–1458. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Goossens, S.; Sabaka, T.J.; Nicholas, J.B.; Mazarico, E.; Rowlands, D.D.; Loomis, B.D.; Chinn, D.S.; Neumann, G.A.; Smith, D.E.; et al. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 2014, 41, 3382–3389. [Google Scholar] [CrossRef]
- Melosh, H.J. Impact Cratering: A Geologic Process; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Du, J.; Fa, W.; Wieczorek, M.A.; Xie, M.; Cai, Y.; Zhu, M.-H. Thickness of Lunar Mare Basalts: New Results Based on Modeling the Degradation of Partially Buried Craters. J. Geophys. Res. Planets 2019, 124, 2430–2459. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet. Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Michael, G.G.; Platz, T.; Kneissl, T.; Schmedemann, N. Planetary surface dating from crater size–frequency distribution measurements: Spatial randomness and clustering. Icarus 2012, 218, 169–177. [Google Scholar] [CrossRef]
- Michael, G.; Neukum, G. Planetary Surface Dating from Crater Size-Frequency Distribution Measurements: Differential Forms of Production Function Polynomials. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010. [Google Scholar]
- Lemelin, M.; Lucey, P.G.; Song, E.; Taylor, G.J. Lunar central peak mineralogy and iron content using the Kaguya Multiband Imager: Reassessment of the compositional structure of the lunar crust. J. Geophys. Res. Planets 2015, 120, 869–887. [Google Scholar] [CrossRef]
- Solomon, S.C.; Head, J.W. Lunar Mascon Basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys. 1980, 18, 107–141. [Google Scholar] [CrossRef]
- Yue, Z.; Yang, M.; Jia, M.; Michael, G.; Di, K.; Gou, S.; Liu, J. Refined model age for Orientale Basin derived from zonal crater dating of its ejecta. Icarus 2020, 346, 113804. [Google Scholar] [CrossRef]
- Eberhardt, P.; Geiss, J.; Grögler, N.; Stettler, A. How old is the crater copernicus? Moon 1973, 8, 104–114. [Google Scholar] [CrossRef]
- Alexander, E.C., Jr.; Bates, A.; Coscio, M.R., Jr.; Dragon, J.C.; Murthy, V.R.; Pepin, R.O.; Venkatesan, T.R. K/Ar dating of lunar soils II. Lunar Planet. Sci. Conf. Proc. 1976, 1, 625–648. [Google Scholar]
- Hiesinger, H.; van der Bogert, C.H.; Pasckert, J.H.; Funcke, L.; Giacomini, L.; Ostrach, L.R.; Robinson, M.S. How old are young lunar craters? J. Geophys. Res. Planets 2012, 117, 1–15. [Google Scholar] [CrossRef]
- Bell, J.F.; Hawke, B.R. Lunar dark-haloed impact craters: Origin and implications for Early Mare volcanism. J. Geophys. Res. Solid Earth 1984, 89, 6899–6910. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Liu, J.; Ren, X.; Huang, H.; Zhang, H.; Li, C. The Identification and Analysis of Gas-Related Volcanic Features within Chang’e-5 Landing Region. Remote Sens. 2021, 13, 3879. [Google Scholar] [CrossRef]
- Weitz, C.M.; Head, J.W.; Pieters, C.M. Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies. J. Geophys. Res. Planets 1998, 103, 22725–22759. [Google Scholar] [CrossRef]
- Gaddis, L.R.; Staid, M.I.; Tyburczy, J.A.; Hawke, B.R.; Petro, N.E. Compositional analyses of lunar pyroclastic deposits. Icarus 2003, 161, 262–280. [Google Scholar] [CrossRef]
- Jawin, E.R.; Besse, S.; Gaddis, L.R.; Sunshine, J.M.; Head, J.W.; Mazrouei, S. Examining spectral variations in localized lunar dark mantle deposits. J. Geophys. Res. Planets 2015, 120, 1310–1331. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, J.O.; Bell, J.F.; Gaddis, L.R.; Hawke, B.R.; Giguere, T.A. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. J. Geophys. Res. Planets 2012, 117, 1–21. [Google Scholar] [CrossRef]
- Mighani, S.; Wang, H.P.; Shuster, D.L.; Borlina, C.S.; Nichols, C.I.O.; Weiss, B.P. The end of the lunar dynamo. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Hu, T.; Kang, Z.; Du, X.; Zhao, L. Study of the Buried Basin C-H, Based on the Multi-Source Remote Sensing Data. Remote Sens. 2022, 14, 5284. https://doi.org/10.3390/rs14215284
Xu X, Hu T, Kang Z, Du X, Zhao L. Study of the Buried Basin C-H, Based on the Multi-Source Remote Sensing Data. Remote Sensing. 2022; 14(21):5284. https://doi.org/10.3390/rs14215284
Chicago/Turabian StyleXu, Xiaojian, Teng Hu, Zhizhong Kang, Xing Du, and Lin Zhao. 2022. "Study of the Buried Basin C-H, Based on the Multi-Source Remote Sensing Data" Remote Sensing 14, no. 21: 5284. https://doi.org/10.3390/rs14215284
APA StyleXu, X., Hu, T., Kang, Z., Du, X., & Zhao, L. (2022). Study of the Buried Basin C-H, Based on the Multi-Source Remote Sensing Data. Remote Sensing, 14(21), 5284. https://doi.org/10.3390/rs14215284