Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing Images
"> Figure 1
<p>Field VNIR hyperspectral platform at Purdue University. (<b>a</b>) VNIR hyperspectral imaging sensor; (<b>b</b>) Local weather station (Ambient Weather, Chandler, AZ, USA); (<b>c</b>,<b>d</b>) Xiaomi flower care sensor (Xiaomi Inc., Beijing, China); (<b>e</b>) the layout of the east–west orientated imaging system; (<b>f</b>) image sample of the whole field; (<b>g</b>) enlarged image sample of part of the field; (<b>h</b>) binary image after segmentation; (<b>i</b>) layout of the plots with three nitrogen treatments and two genotypes. The green boxes were for Genotype P1105AM, and the blue boxes were for Genotype B73 × Mo17. Nitrogen treatments of HN, MN and LN were also labeled; (<b>j</b>) NDVI heatmap; (<b>k</b>) the spectra from different genotypes and nitrogen treatments.</p> "> Figure 2
<p>The NDVI heatmaps for the whole field at three leaf stages with different accumulated after days planting (DAP). (<b>a</b>). 31 DAP, leaf stage V4; (<b>b</b>). 38 DAP, leaf stage V6; (<b>c</b>). 49 DAP, leaf stage V9.</p> "> Figure 3
<p>The growth of corn plants in the Purdue ACRE field during the experiment at different DAPs.</p> "> Figure 4
<p>The Relative Water Content (RWC) prediction model based on Partial Least Square Regression Relative (PLSR): measurement vs. prediction.</p> "> Figure 5
<p>(<b>a</b>) The NDVI of HN and Genotype B73 × Mo17 plot from V4 stage to the R1 stage (Obtained from the hyperspectral images); (<b>b</b>) The NDVI measurements across Day 1 (black dots). The red curve is the predicted NDVI diurnal variance by PROSAIL model. Parameters for the PROSAIL model for the corn canopies followed the work of Ishihara et al. in 2015.</p> "> Figure 6
<p>The mean RDR curves of six plant plots versus time (H). (<b>a</b>) HN and B73 × Mo17; (<b>b</b>) HN and P1105AM; (<b>c</b>) MN and B73 × Mo17; (<b>d</b>) MN and P1105AM; (<b>e</b>) LN and B73 × Mo17; (<b>f</b>) LN and P1105AM.</p> "> Figure 7
<p>The NDVI of HN and Genotype B73 × Mo17 plot from V4 stage to the R1 stage. The raw NDVI plot was decomposed into the day-to-day trend (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>t</mi> </msub> </mrow> </semantics></math>) and diurnal pattern (<math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>t</mi> </msub> </mrow> </semantics></math>). The red boxes are the days with incomplete data measurements due to the extreme weather conditions, which are 36, 37, 58, 59 and 60 DAP.</p> "> Figure 8
<p>The diurnal changes of NDVI summarized from 31 days and six experimental plots. The x-axis is the diurnal time in a unit of hour. The y-axis is the diurnal NDVI changes. The black line is the mean diurnal NDVI adjustment value. The shaded area is the 95% confidence interval. The red line is the 1st order piecewise fitted result for the mean diurnal NDVI adjustment value.</p> "> Figure 9
<p>The intersections between the adjusted NDVI’s diurnal changes and three different thresholds for proper imaging windows. The x-axis is the diurnal time in a unit of hour. The y-axis is the adjusted NDVI’s diurnal changes when adjustment at solar noon to be 0.</p> "> Figure 10
<p>The mean diurnal patterns and fitted results of other plant phenotyping features including RWC, Red and NIR. (<b>a</b>) RWC, diurnal pattern; (<b>b</b>) RWC, fitted result; (<b>c</b>) Red, diurnal pattern; (<b>d</b>) Red, fitted result; (<b>e</b>) NIR, diurnal pattern; (<b>f</b>) NIR, fitted result.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. High-Throughput Field Imaging Acquisition System
2.2. Experiment Design and Data Collection
2.3. Image Segmentation and Feature Extraction
2.4. Data Quality Check
2.5. Evaluating the Impacts from Treatments, Stages and Genotypes to Diurnal Changing Patterns
2.6. Diurnal Patterns Calculation by Time Series Signal Decomposition
2.7. Diurnal Pattern Fitting
2.8. Model Performance Evaluation
2.9. Diurnal Models’ Applications
3. Results
3.1. The NDVI Diurnal Fluctuations
3.2. The Impacts of Nutrient Treatments, Genotypes and Leaf Stages on Diurnal Variation
3.3. Diurnal Changing Pattern
3.3.1. Decomposition
3.3.2. Pattern Fitting
3.3.3. Applications of the Model
3.4. Other Image-Derived Phenotyping Features
4. Discussions
4.1. Strengths
4.2. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: The next challenge. Nat. Rev. Genet. 2010, 11, 855–866. [Google Scholar] [CrossRef]
- Fiorani, F.; Schurr, U. Future Scenarios for Plant Phenotyping. Annu. Rev. Plant. Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Song, Z.; Wang, J.; Zhang, L.; Rehman, T.U.; Ma, D.; Carpenter, N.R.; Tuinstra, M.R. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Comput. Electron. Agric. 2020, 169, 105209. [Google Scholar] [CrossRef]
- Fiorani, F.; Rascher, U.; Jahnke, S.; Schurr, U. Imaging plants dynamics in heterogenic environments. Curr. Opin. Biotechnol. 2012, 23, 227–235. [Google Scholar] [CrossRef]
- de Souza, E.G.; Scharf, P.C.; Sudduth, K.A. Sun position and cloud effects on reflectance and vegetation indices of corn. Agron. J. 2010, 102, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Maji, S.; Chandra, B.; Viswavidyalaya, K. Diurnal Variation in Spectral Properties of Potato under Different Dates of Planting and N-Doses. Environ. Ecol. 2015, 33, 478–483. [Google Scholar]
- Gamon, J.A.; Kovalchuck, O.; Wong, C.Y.S.; Harris, A.; Garrity, S.R. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 2015, 12, 4149–4159. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Grasso, R.; Gallardo, M.; Thompson, R.B. Influence of time of day on measurement with chlorophyll meters and canopy reflectance sensors of different crop N status. Precis. Agric. 2019, 20, 1087–1106. [Google Scholar] [CrossRef] [Green Version]
- Beneduzzi, H.M.; Souza, E.G.; Bazzi, C.L.; Schenatto, K. Temporal variability in active reflectance sensor-measured NDVI in soybean and wheat crops. Eng. Agric. 2017, 37, 771–781. [Google Scholar] [CrossRef]
- Ranson, K.J.; Daughtry, C.S.T.; Biehl, L.L.; Bauer, M.E. Sun-view angle effects on reflectance factors of corn canopies. Remote Sens. Environ. 1985. [Google Scholar] [CrossRef]
- Jackson, R.D.; Pinter, P.J., Jr.; Idso, S.B.; Reginato, R.J. Wheat spectral reflectance: Interactions between crop configuration, sun elevation, and azimuth angle. Appl. Opt. 1979, 18, 3730–3732. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.R. Techniques for Remotely Monitoring Canopy Development and Estimating Grain Yield of Moisture Stressed Corn (Landsat, Sensed). Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 1983. Available online: https://digitalcommons.unl.edu/dissertations/AAI8412302 (accessed on 26 April 2021).
- Oliveira, L.F.; Scharf, P.C. Diurnal variability in reflectance measurements from cotton. Crop. Sci. 2014, 54, 1769–1781. [Google Scholar] [CrossRef]
- Sticksel, E.; Schächtl, J.; Huber, G.; Liebler, J.; Maidl, F.X. Diurnal variation in hyperspectral vegetation indices related to winter wheat biomass formation. Precis. Agric. 2004, 5, 509–520. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Xu, S.; He, X.; Ni, Z.; Zhao, H.; Ren, S. Retrieving the diurnal FPAR of a maize canopy from the jointing stage to the tasseling stage with vegetation indices under different water stresses and light conditions. Sensors 2018, 18, 3965. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, S.F.; Rizza, F.; Badeck, F.W.; Berton, A.; Delbono, S.; Gioli, B.; Toscano, P.; Zaldei, A.; Matese, A. UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. Int. J. Remote Sens. 2018, 39, 5330–5344. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Fernandez-Gallego, J.A.; Vergara-Díaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and ground image-based phenotyping: A proof of concept with durum wheat. Remote Sens. 2019, 11, 1244. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones 2019, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Bellvert, J.; Girona, J. The use of multispectral and thermal images as a tool for irrigation scheduling in vineyards. Use Remote. Sens. Geogr. Inf. Syst. Irrig. Manag. Southwest Eur. 2012, 137, 131–137. [Google Scholar]
- Campbell, P.K.E.; Huemmrich, K.F.; Middleton, E.M.; Ward, L.A.; Julitta, T.; Daughtry, C.S.T.; Burkart, A.; Russ, A.L.; Kustas, W.P. Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. Remote Sens. 2019, 11, 488. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, M.; Inoue, Y.; Ono, K.; Shimizu, M.; Matsuura, S. The impact of sunlight conditions on the consistency of vegetation indices in croplands-Effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sens. 2015, 7, 14079–14098. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Berger, K.; Atzberger, C.; Danner, M.; Wocher, M.; Mauser, W.; Hank, T. Model-based optimization of spectral sampling for the retrieval of crop variables with the PROSAIL model. Remote Sens. 2018, 10, 2063. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.R. Agricultural Drones: A Peaceful Pursuit; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Burnette, M.; Kooper, R.; Maloney, J.D.; Rohde, G.S.; Terstriep, J.A.; Willis, C.; Fahlgren, N.; Mockler, T.; Newcomb, M.; Sagan, V.; et al. TERRA-REF data processing infrastructure. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2017; pp. 1–7. Available online: https://dl.acm.org/doi/abs/10.1145/3219104.3219152 (accessed on 26 April 2021).
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant. Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Ma, D.; Carpenter, N.; Maki, H.; Rehman, T.U.; Tuinstra, M.R.; Jin, J. Greenhouse environment modeling and simulation for microclimate control. Comput. Electron. Agric. 2019, 162, 134–142. [Google Scholar] [CrossRef]
- Ma, D.; Maki, H.; Neeno, S.; Zhang, L.; Wang, L.; Jin, J. Application of non-linear partial least squares analysis on prediction of biomass of maize plants using hyperspectral images. Biosyst. Eng. 2020, 200, 40–54. [Google Scholar] [CrossRef]
- Ma, D.; Wang, L.; Zhang, L.; Song, Z.; Rehman, T.U.; Jin, J. Stress distribution analysis on hyperspectral corn leaf images for improved phenotyping quality. Sensors 2020, 20, 3659. [Google Scholar] [CrossRef]
- Zhang, L.; Maki, H.; Ma, D.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Wang, L.; Rehman, T.U.; Jin, J. Optimized angles of the swing hyperspectral imaging system for single corn plant. Comput. Electron. Agric. 2019, 156, 349–359. [Google Scholar] [CrossRef]
- Ma, D.; Carpenter, N.; Amatya, S.; Maki, H.; Wang, L.; Zhang, L.; Neeno, S.; Tuinstra, M.R.; Jin, J. Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping. Comput. Electron. Agric. 2019, 166, 104979. [Google Scholar] [CrossRef]
- Schafleitner, R.; Gutierrez, R.; Espino, R.; Gaudin, A.; Pérez, J.; Martínez, M.; Domínguez, A.; Tincopa, L.; Alvarado, C.; Numberto, G.; et al. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res. 2007, 50, 71–85. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Alamar, M.C.; Bobelyn, E.; Lammertyn, J.; Nicolaï, B.M.; Moltó, E. Calibration transfer between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids contents of apple. Postharvest Biol. Technol. 2007, 45, 38–45. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Improved estimates of organic carbon using proximally sensed vis-NIR spectra corrected by piecewise direct standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; Shao, X. Correcting multivariate calibration model for near infrared spectral analysis without using standard samples. J. Near Infrared Spectrosc. 2015, 23, 285–291. [Google Scholar] [CrossRef]
- Schwertman, N.C.; de Silva, R. Identifying outliers with sequential fences. Comput. Stat. Data Anal. 2007. [Google Scholar] [CrossRef]
- Manea, D.; Calin, M.A. Hyperspectral imaging in different light conditions. Imaging Sci. J. 2015, 63, 214–219. [Google Scholar] [CrossRef]
- Berndt, D.; Clifford, J. Using dynamic time warping to find patterns in time series. Work. Knowl. Knowl. Discov. Databases 1994, 398, 359–370. [Google Scholar]
- Kate, R.J. Using dynamic time warping distances as features for improved time series classification. Data Min. Knowl. Discov. 2016, 30, 283–312. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Rojo, J.; Rivero, R.; Romero-Morte, J.; Fernández-González, F.; Pérez-Badia, R. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. Int. J. Biometeorol. 2017, 61, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Maimaitiyiming, M.; Erkbol, H.; Hartling, S.; Peterson, K.T.; Peterson, J.; Burken, J.; Fritschi, F. Uav/satellite multiscale data fusion for crop monitoring and early stress detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Dunford, R.P.; Yano, M.; Kurata, N.; Sasaki, T.; Huestis, G.; Rocheford, T.; Laurie, D.A. Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics 2002, 161, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, B.; Abelenda, J.A.; Gomez, M.D.M.C.; Oortwijn, M.; De Boer, J.M.; Kowitwanich, K.; Horvath, B.M.; Van Eck, H.J.; Smaczniak, C.; Prat, S.; et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 2013, 495, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. The Pseudo-Response Regulator Ppd-H1 Provides The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2007, 1031, 1031–1035. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Z.; Huo, H.; Li, Z.L.; Nerry, F.; Wang, Q.; Li, X. Early water stress detection using leaf-level measurements of chlorophyll fluorescence and temperature data. Remote Sens. 2015, 7, 3232–3249. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Lamb, D.W.; Stanley, J.N. The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agric. Meteorol. 2015, 202, 39–43. [Google Scholar] [CrossRef]
- Atkin, O.K.; Holly, C.; Ball, M.C. Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: The importance of changes in the capacity and temperature sensitivity of respiration. Plant Cell Environ. 2000, 23, 15–26. [Google Scholar] [CrossRef]
- Wang, R.; Cherkauer, K.; Bowling, L. Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series. Remote. Sens. 2016, 8, 269. [Google Scholar] [CrossRef] [Green Version]
Parameters | MSV-101-W |
---|---|
Camera model | acA780–75 gm |
Spectrograph | SpecIM V10H |
Frame rate | 30 FPS |
Exposure time | 6 ms |
Spectral resolution | 1.22 nm |
Ground sample distance (GSD) | 0.5 cm/pixel |
Spectral range | 376–1044 nm |
Plant Plots | Number of Samples after the Quality Check |
---|---|
HN and B73 × Mo17 | 5070 |
MN and B73 × Mo17 | 5092 |
LN and B73 × Mo17 | 5083 |
HN and P1105AM | 5108 |
MN and P1105AM | 5084 |
LN and P1105AM | 5093 |
Plant Plots | Mean | Highest | Lowest | Max Error |
---|---|---|---|---|
HN and B73 × Mo17 | 0.756 | 0.808 | 0.698 | 15.71% |
MN and B73 × Mo17 | 0.732 | 0.780 | 0.689 | 13.33% |
LN and B73 × Mo17 | 0.686 | 0.741 | 0.645 | 14.95% |
HN and P1105AM | 0.759 | 0.817 | 0.717 | 13.96% |
MN and P1105AM | 0.738 | 0.797 | 0.689 | 15.68% |
LN and P1105AM | 0.687 | 0.733 | 0.648 | 13.20% |
Plant Plots | HN and B73 × Mo17 | HN and P1105AM | MN and B73 × Mo17 | MN and P1105AM | LN and B73 × Mo17 | LN and P1105AM |
---|---|---|---|---|---|---|
HN and B73 × Mo17 | 0.00 | 0.33 | 1.37 | 1.48 | 1.40 | 2.31 |
HN and P1105AM | 0.33 | 0.00 | 2.67 | 2.95 | 2.59 | 3.75 |
MN and B73 × Mo17 | 1.37 | 2.67 | 0.00 | 0.20 | 0.14 | 0.60 |
MN and P1105AM | 1.48 | 2.95 | 0.20 | 0.00 | 0.30 | 0.82 |
LN and B73 × Mo17 | 1.40 | 2.59 | 0.14 | 0.30 | 0.00 | 0.30 |
LN and P1105AM | 2.31 | 3.75 | 0.60 | 0.82 | 0.30 | 0.00 |
Plant Plots | Distance Score between Early Stage and Late Stage |
---|---|
HN and B73 × Mo17 | 0.90 |
MN and B73 × Mo17 | 1.26 |
LN and B73 × Mo17 | 1.15 |
HN and P1105AM | 0.25 |
MN and P1105AM | 0.74 |
LN and P1105AM | 0.63 |
Plant Plots | R2 | RMSE |
---|---|---|
HN and B73 × Mo17 | 0.77 | 0.0058 |
MN and B73 × Mo17 | 0.96 | 0.0036 |
LN and B73 × Mo17 | 0.95 | 0.0032 |
HN and P1105AM | 0.91 | 0.0038 |
MN and P1105AM | 0.94 | 0.0034 |
LN and P1105AM | 0.98 | 0.0022 |
Thresholds | Suggested Imaging Time | Range |
---|---|---|
0.01 | 12:45–14:40 | 1 h 55 min |
0.02 | 11:55–15:45 | 3 h 50 min |
0.03 | 10:55–16:30 | 5 h 35 min |
Features | R2 | RMSE |
---|---|---|
RWC | 0.97 | 0.16 |
Red | 0.91 | 0.00094 |
NIR | 0.98 | 0.0071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Rehman, T.U.; Zhang, L.; Maki, H.; Tuinstra, M.R.; Jin, J. Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing Images. Remote Sens. 2021, 13, 1719. https://doi.org/10.3390/rs13091719
Ma D, Rehman TU, Zhang L, Maki H, Tuinstra MR, Jin J. Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing Images. Remote Sensing. 2021; 13(9):1719. https://doi.org/10.3390/rs13091719
Chicago/Turabian StyleMa, Dongdong, Tanzeel U. Rehman, Libo Zhang, Hideki Maki, Mitchell R. Tuinstra, and Jian Jin. 2021. "Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing Images" Remote Sensing 13, no. 9: 1719. https://doi.org/10.3390/rs13091719
APA StyleMa, D., Rehman, T. U., Zhang, L., Maki, H., Tuinstra, M. R., & Jin, J. (2021). Modeling of Diurnal Changing Patterns in Airborne Crop Remote Sensing Images. Remote Sensing, 13(9), 1719. https://doi.org/10.3390/rs13091719