Integrating Hierarchical Statistical Models and Machine-Learning Algorithms for Ground-Truthing Drone Images of the Vegetation: Taxonomy, Abundance and Population Ecological Models
<p>Outline of the hierarchical model for determining the uncertainty of the vertical density measured by the drone images. The true, but unknown, vertical density of species <math display="inline"><semantics> <mi>i</mi> </semantics></math> at plot <math display="inline"><semantics> <mi>j</mi> </semantics></math> in ground-truthing plot <span class="html-italic">j</span> is modeled by the latent variable<math display="inline"><semantics> <mrow> <mo> </mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math>. The posterior distribution of the latent variable is calculated using both (i) the vertical density predicted from the information from the drone images using machine-learning algorithms<math display="inline"><semantics> <mrow> <mo> </mo> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> that are modeled using<math display="inline"><semantics> <mrow> <mo> </mo> <mi>M</mi> <mn>3</mn> </mrow> </semantics></math>, and (ii) the vertical density measured by the pin-point method <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> that is modeled using<math display="inline"><semantics> <mrow> <mo> </mo> <mi>M</mi> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Hierarchical population ecological model fitted to image data from a selected “vegetation plot” <span class="html-italic">l</span> that has the same size as the ground-truthing plots, but where only image data are available. The true, but unknown, vertical density of species <math display="inline"><semantics> <mi>i</mi> </semantics></math> at time <span class="html-italic">t</span> is modeled by the latent variable<math display="inline"><semantics> <mrow> <mo> </mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> and the solid arrows are the process equation (Equation (4)). The dashed arrows are the fitted measurement equations <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> that link the vertical density predicted from the information from the drone images <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> to the latent variables.</p> ">
Abstract
:1. Introduction
2. Methods and Models
2.1. Pin-Point Data—Vertical Density
2.2. Machine-Learning Algorithms of Image Data
2.3. Statistical Models
2.4. Population Ecological Modeling Using Image Data
3. Discussion
Funding
Conflicts of Interest
References
- Tay, J.Y.L.; Erfmeier, A.; Kalwij, J.M. Reaching new heights: Can drones replace current methods to study plant pop-ulation dynamics? Plant Ecol. 2018, 219, 1139–1150. [Google Scholar] [CrossRef]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M.B. Neural hierarchical models of ecological populations. Ecol. Lett. 2020, 23, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.; Grubb, P.J.; Kelly, D. Quantifying the Impact of Competition and Spatial Heterogeneity on the Structure and Dynamics of a Four-Species Guild of Winter Annuals. Am. Nat. 1996, 147, 1–32. [Google Scholar] [CrossRef]
- Adler, P.B.; HilleRisLambers, J.; Levine, J.M. Weak effect of climate variability on coexistince in a sagebrush steppe community. Ecology 2009, 90, 3303–3312. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, C.; Riis-Nielsen, T.; Schmidt, I.K. Estimating plant competition coefficients and predicting community dynamics from non-destructive pin-point data: A case study with Calluna vulgaris and Deschampsia flexuosa. Veg. Acta Genet. 2008, 201, 687–697. [Google Scholar] [CrossRef]
- Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 1983, 11, 385–388. [Google Scholar] [CrossRef]
- Jonasson, S. Evaluation of the Point Intercept Method for the Estimation of Plant Biomass. Oikos 1988, 52, 101. [Google Scholar] [CrossRef]
- Damgaard, C.; Strandberg, B.; Mathiassen, S.K.; Kudsk, P. The effect of glyphosate on the growth and competitive effect of perennial grass species in semi-natural grasslands. J. Environ. Sci. Health Part B 2014, 49, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Ransijn, J.; Damgaard, C.; Schmidt, I.K. Do competitive interactions in dry heathlands explain plant abundance patterns and species coexistence? Veg. Acta Geobot. 2014, 216, 199–211. [Google Scholar] [CrossRef]
- Damgaard, C.; Weiner, J. The need for alternative plant species interaction models. J. Plant Ecol. 2020. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Wang, G.; Zhang, H. Deep Learning for Plant Identification in Natural Environment. Comput. Intell. Neurosci. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.; Westergaard-Nielsen, A.; Normand, S.; Treier, U.A.; Elberling, B.; Hansen, B.U. A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS J. Photogramm. Remote Sens. 2018, 146, 518–529. [Google Scholar] [CrossRef]
- National Research Council. Models in Environmental Regulatory Decision Making; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Jaynes, E.T.; Bretthorst, G.L. Probability theory: The logic of science. Math. Intell. 2005, 27, 83. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/hierarchical Models; Cambridge University Press: New York, NY, USA, 2006; ISBN 1-139-46093-5. [Google Scholar]
- Cressie, N.; Calder, C.A.; Clark, J.S.; Hoef, J.M.V.; Wikle, C.K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 2009, 19, 553–570. [Google Scholar] [CrossRef] [PubMed]
- AgiSoft. AgiSoft PhotoScan Professional, Version 1.2.6; 2016. Available online: https://www.agisoft.com/forum/index.php?topic=9513.0 (accessed on 17 March 2021).
- Wäldchen, J.; Mäder, P. Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Arch. Comput. Methods Eng. 2018, 25, 507–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wäldchen, J.; Rzanny, M.; Seeland, M.; Mäder, P. Automated plant species identification—Trends and future direc-tions. PLoS Comput. Biol. 2018, 14, e1005993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigyik, B.A.; Kapila, A.; Gupta, M.R. Introduction to the Dirichlet Distribution and Related Processes; UWEE Technical Report; University of Washington: Washington, DC, USA, 2010. [Google Scholar]
- Damgaard, C. Measurement Uncertainty in Ecological and Environmental Models. Trends Ecol. Evol. 2020, 35, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, Q.; Peng, C.; Wang, H.; Chen, H. From plant functional types to plant functional traits: A new paradigm in modelling gloegetation dynamics. Prog. Phys. Geogr. Earth Environ. 2015, 39, 514–535. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Plant Functional Types and Ecosystem Function in Relation to Global Change. J. Veg. Sci. 1997, 8, 463–474. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.L.; Grigulis, K. Plant Functional Diversity. Organism Traits, Community Structure and Ecosystem Properties; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damgaard, C. Integrating Hierarchical Statistical Models and Machine-Learning Algorithms for Ground-Truthing Drone Images of the Vegetation: Taxonomy, Abundance and Population Ecological Models. Remote Sens. 2021, 13, 1161. https://doi.org/10.3390/rs13061161
Damgaard C. Integrating Hierarchical Statistical Models and Machine-Learning Algorithms for Ground-Truthing Drone Images of the Vegetation: Taxonomy, Abundance and Population Ecological Models. Remote Sensing. 2021; 13(6):1161. https://doi.org/10.3390/rs13061161
Chicago/Turabian StyleDamgaard, Christian. 2021. "Integrating Hierarchical Statistical Models and Machine-Learning Algorithms for Ground-Truthing Drone Images of the Vegetation: Taxonomy, Abundance and Population Ecological Models" Remote Sensing 13, no. 6: 1161. https://doi.org/10.3390/rs13061161
APA StyleDamgaard, C. (2021). Integrating Hierarchical Statistical Models and Machine-Learning Algorithms for Ground-Truthing Drone Images of the Vegetation: Taxonomy, Abundance and Population Ecological Models. Remote Sensing, 13(6), 1161. https://doi.org/10.3390/rs13061161