Evaluation and Projection of Wind Speed in the Arid Region of Northwest China Based on CMIP6
<p>Variations (<b>a</b>) and trends (<b>b</b>) of observed (black solid line) and simulated (color dot line, red and green solid line) surface wind speed in the ARNC from 1971 to 2014.</p> "> Figure 2
<p>Taylor chart of CMIP6 models in simulating wind speed in the ARNC during 1971–2014.</p> "> Figure 3
<p>Comparison between revised/unrevised PME and observation in time and space. (<b>a</b>) annual mean surface wind speed (<b>b</b>) monthly mean surface wind speed (<b>c</b>) observed wind speed (<b>d</b>) simulated wind speed by the unrevised PME (<b>e</b>) simulated wind speed by the revised PME.</p> "> Figure 4
<p>Variations in projected annual wind speed in the ARNC from 1995 to 2100 under different emission scenarios. The black bar chart shows the variation trend of surface wind speed in NF, MF, FF and FP.</p> "> Figure 5
<p>Spatial difference distribution of NF (row 1), MF (row 2), FF (row 3), and FP (row 4) relative to BP (1995–2014) under four emission scenarios.</p> "> Figure 6
<p>Variations in the seasonal wind speed in the ARNC from 1995 to 2100 under four emission scenarios. The black bar chart shows the variation trend of surface wind speed in NF, MF, FF and FP.</p> "> Figure 7
<p>Spatial difference distribution of seasonal mean wind speed relative to BP in NF (row 1), MF (row 2), FF (row 3), and FP (row 4) under four emission scenarios.</p> "> Figure 7 Cont.
<p>Spatial difference distribution of seasonal mean wind speed relative to BP in NF (row 1), MF (row 2), FF (row 3), and FP (row 4) under four emission scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Model Evaluation
2.2.2. Deviation Correction
3. Results
3.1. Evaluation of Simulation Ability of CMIP6 Model Data
3.1.1. Temporal Simulation Ability
3.1.2. Spatial Simulation Ability
3.2. Deviation Correction of CMIP6 Model Data
3.3. Projection of Annual Wind Speed in the ARNC
3.3.1. Temporal Trend
3.3.2. Spatial Variation
3.4. Projection of Seasonal Wind Speed in the ARNC
3.4.1. Temporal Trend
3.4.2. Spatial Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.Q.; Yun, T.; An, F.; Kou, W.L.; Li, H.L.; Luo, H.X.; Yang, C.; Wang, Q.F.; Sun, R.; Wu, Z.X. Assessment of tornado disaster in rubber plantation in western Hainan using and sat and sentinel-2 time series images. Natl. Remote Sens. Bull. 2021, 25, 816–829. [Google Scholar]
- Wang, C.Z.; Niu, S.J.; Wang, L.N. Multi-timescale Variation of Sand-dust Storm in China during 1958–2007. Trans. Atmos. Sci. 2009, 32, 507–512. [Google Scholar]
- Donohue, R.J.; McVicar, T.; Roderick, M. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. 2019, 9, 979–985. [Google Scholar] [CrossRef]
- Roderick, M.; Rotstayn, L.; Farquhar, G.; Hobbins, M. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, L17403. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Huang, G.; Hu, K.; Niyogi, D. Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016. Energy 2019, 167, 1224–1235. [Google Scholar] [CrossRef]
- Homogenization and Assessment of Observed Near-Surface Wind Speed Trends over Spain and Portugal, 1961–2011. J. Clim. 2014, 27, 3692–3712. [CrossRef]
- Kim, J.; Paik, K. Recent recovery of surface wind speed after decadal decrease: A focus on South Korea. Clim. Dyn. 2015, 45, 1699–1712. [Google Scholar] [CrossRef]
- Malloy, J.W.; Krahenbuhl, D.S.; Bush, C.E.; Balling, R.C.; Santoro, M.M.; White, J.R.; Elder, R.C.; Pace, M.B.; Cerveny, R.S. A Surface Wind Extremes (“Wind Lulls” and “Wind Blows”) Climatology for Central North America and Adjoining Oceans (1979–2012). J. Appl. Meteorol. Clim. 2015, 54, 643–657. [Google Scholar] [CrossRef] [Green Version]
- Najac, J.; Lac, C.; Terray, L. Impact of climate change on surface winds in France using a statistical-dynamical downscaling method with mesoscale modelling. Int. J. Clim. 2011, 31, 415–430. [Google Scholar] [CrossRef]
- Tuller, S.E. Measured wind speed trends on the west coast of Canada. Int. J. Clim. 2004, 24, 1359–1374. [Google Scholar] [CrossRef]
- Feng, Y.; Que, L.; Feng, J. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China. Atmos. Ocean. Sci. Lett. 2019, 13, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.X.; Yan, J.P.; Li, M.M. Climate Change and Response characteristics to Wind Speed in Northwestern China. Bull. Soil Water Conserv. 2014, 34, 134–137. [Google Scholar] [CrossRef]
- Xia, Y.F.; Zhang, X.W. China distributed wind power white paper. Wind. Energy 2018, 07, 28–31. [Google Scholar]
- Huang, X.Y.; Zhang, M.J.; Wang, S.J.; Xin, H.; He, J.Y. Variation characteristics of sunshine hours and wind speed in Northwest China in recent 50 years. J. Nat. Resour. 2011, 26, 825–835. [Google Scholar]
- Lu, J.Y.; Yan, J.P.; Wang, P.T.; Liu, Y.L. Wind Speed Change Characteristics of Shaanxi-gansu-ningxia Area in 1960–2014. J. Desert Res. 2017, 37, 554–561. [Google Scholar]
- Wang, N.; You, Q.L.; Liu, J.J. The long-term trend of surface wind speed in China from 1979 to 2014. J. Nat. Resour. 2019, 34, 1531–1542. [Google Scholar]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. Intercomparison makes for a better climate model. Eos Trans. Am. Geophys. Union 1997, 78, 445–451. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Moss, R.; Taylor, K.E.; Eyring, V.; Stouffer, R.J.; Bony, S.; Stevens, B. Climate Model Intercomparisons: Preparing for the Next Phase. Eos Trans. Am. Geophys. Union 2014, 95, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.K.; Stouffer, J.R.; Meehl, A.G. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.J.; Zou, L.W.; Chen, X.L. Commentary on the Coupled Model Intercomparison Project Phase 6(CMIP6). Clim. Chang. Res. 2019, 15, 445–456. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (Scenariomip). Clim. Chang. Res. 2019, 15, 519–525. [Google Scholar]
- Feng, S.L.; Jin, S.L.; Liu, X.L.; Ma, Z.Q.; Hu, J.; Song, Z.P. Land Surface Temperature Simulations of CMIP5 Models over Northeast Chinaduring 1981–2005. Meteorol. Sci. Technol. 2018, 46, 1154–1164. [Google Scholar] [CrossRef]
- Li, Y.; Mai, M. Projection of precipitation over Jiangsu Province based on global andregional climate models. Trans. Atmos. Sci. 2019, 42, 447–458. [Google Scholar]
- Liu, Z.; Xu, Z.; Yao, Z.; Huang, H. Comparison of surface variables from ERA and NCEP reanalysis with station data over eastern China. Theor. Appl. Clim. 2011, 107, 611–621. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Kjellström, E. Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model. Clim. Dyn. 2005, 25, 815–835. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.P.; Wang, Y.; Jiang, Z.H.; Chu, H.Y. Application of Dynamical Downscaling Method for Assessment of Wind Energy Resources. Clim. Environ. Res. 2009, 14, 192–200. [Google Scholar]
- Jiang, Y.; Luo, Y.; Zhao, Z.C. Proiection of Wind Speed Changes in China in the 21st Century by Climate Models. Chin. J. Atmos. Sci. 2010, 34, 323–336. [Google Scholar]
- Jiang, Y.; Luo, Y.; Zhao, Z.C. Evaluation of wind speeds in China as simulated by global climate models. Acta Meteorol. Sin. 2009, 67, 923–934. [Google Scholar] [CrossRef]
- Jie, W.; Ying, S.; Ying, X. Evaluation and Projection of Surface Wind Speed Over China Based on CMIP6 GCMs. J. Geophys. Res. Atmos. 2020, 125, e2020JD033611. [Google Scholar]
- Jiang, Y.; Xu, X.Y.; Liu, H.W.; Wang, W.W.; Dong, X.G. Projection of surface wind by CMIP5 and CMIP3 in China in the 21 century. J. Meteorol. Environ. 2018, 34, 56–63. [Google Scholar]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other dataset. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Space Phys. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhaskaran, P.K. Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Clim. Dyn. 2020, 55, 2667–2687. [Google Scholar] [CrossRef]
- Hu, H.L.; Ren, F.M. Simulation and Projection for Chinas Regional Low Temperature Eventswith CMIP5 Multi-model Ensembles. Clim. Chang. Res. 2016, 12, 396–406. [Google Scholar]
- Zhang, Y.W.; Zhang, L.; Xu, Y. Simulations and Projections of the Surface Air Temperature in Chinaby CMIP5 Models. Clim. Chang. Res. 2016, 12, 10–19. [Google Scholar] [CrossRef]
- Azorin-Molina, C.; Dunn, R.; Mears, C.; Berrisford, P.; Mcvicar, T. Surface winds. In State of the Climate in 2016; American Meteorological Society: Boston, MA, USA, 2017. [Google Scholar]
- Zhao, Z.C.; Luo, Y.; Jiang, Y.; Huang, J.B. Possible Reasons of Wind Speed Decline in China for the Last 50 Years. Adv. Meteorol. Sci. Technol. 2016, 6, 106–109. [Google Scholar]
- Hu, Z.-Z.; Bengtsson, L.; Arpe, K. Impact of global warming on the Asian winter monsoon in a coupled GCM. J. Geophys. Res. Space Phys. 2000, 105, 4607–4624. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.B.; Wang, H.J. Natural attributes of the intergenerational weakening of the East Asian summer monsoon in the late 20th century. Chin. Sci. Bull. 2005, 20, 74–80. [Google Scholar]
- Wu, B.; Lang, X.; Jiang, D. Migration of the Northern Boundary of the East Asian Summer Monsoon Over the Last 21,000 years. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Bueh, C. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios. Chin. Sci. Bull. 2003, 48, 1024–1030. [Google Scholar] [CrossRef]
- Saha, U.; Chakraborty, R.; Maitra, A.; Singh, A. East-west coastal asymmetry in the summertime near surface wind speed and its projected change in future climate over the Indian region. Glob. Planet. Chang. 2017, 152, 76–87. [Google Scholar] [CrossRef]
- Shen, C.; Duan, Q.; Miao, C.; Xing, C.; Fan, X.; Wu, Y.; Han, J. Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia. Adv. Atmos. Sci. 2020, 37, 1191–1210. [Google Scholar] [CrossRef]
- Park, C.; Lee, G.; Kim, G.; Cha, D. Future changes in precipitation for identified sub-regions in East Asia using bias-corrected multi-RCMs. Int. J. Clim. 2020, 41, 1889–1904. [Google Scholar] [CrossRef]
Abbreviations | |
---|---|
GCM | Global Climate Model |
CN05.1 | a 0.25° × 0.25° gridded monthly dataset over China developed by Wu et al. [36] |
CMIP6 | Coupled Model Intercomparison Project phase 6 |
ARNC | Arid Region of Northwest China |
SSP | Shared Socioeconomic Pathway |
PME | preferred-model ensemble |
MME | multi-model ensemble |
CMIP | Coupled Model Intercomparison Project |
WCRP | World Climate Research Programme |
WGCM | Working Group on Coupled Modelling |
ESGF | Earth System Grid Federation |
IPCC | Intergovernmental Panel on Climate Change |
RCP | Representative Concentration Pathway |
BP | baseline period |
NF | near future |
MF | mid future |
FF | far future |
FP | final period |
RMSD | Root-Mean-Square Difference |
r | correlation coefficient |
S | standard deviation ratio |
Indicator | Model Name | Institute (Country) | Atmospheric Resolution | Correlation Coefficient |
---|---|---|---|---|
A | ACCESS-CM2 | CSIRO-ARCCSS (Australia) | 1.875° × 1.25° | −0.06 |
B | ACCESS-ESM1-5 | CSIRO (Australia) | 1.875° × 1.241° | 0.41 ** |
C | AWI-CM-1-1-MR | AWI (Germany) | 0.938° × 0.938° | 0.16 |
D | BCC-CSM2-MR | BCC (China) | 1.125° × 1.125° | 0.37 * |
E | CAS-ESM2-0 | CAS (China) | 1.406° × 1.406° | −0.11 |
F | CESM2-WACCM | NCAR (USA) | 1.25° × 0.938° | −0.05 |
G | CMCC-CM2-SR5 | CMCC (Italy) | 1.25° × 0.938° | −0.15 |
H | CMCC-ESM2 | CMCC (Italy) | 1.25° × 0.9375° | −0.14 |
I | EC-Earth3 | EC-Earth-Consortium (Sweden) | 0.703° × 0.703° | 0.30 * |
J | EC-Earth3-Veg | EC-Earth-Consortium (Sweden) | 0.703° × 0.703° | 0.18 |
K | EC-Earth3-Veg-LR | EC-Earth-Consortium (Sweden) | 1.125° × 1.125° | 0.36 * |
L | FGOALS-f3-L | CAS (China) | 1.25° × 1° | −0.10 |
M | GFDL-ESM4 | NOAA GFDL (USA) | 1.25° × 1° | −0.19 |
N | IITM-ESM | CCCR-IITM (India) | 1.875° × 1.915° | 0.04 |
O | INM-CM4-8 | INM (Russia) | 2° × 1.5° | 0.07 |
P | INM-CM5-0 | INM (Russia) | 2° × 1.5° | −0.08 |
Q | IPSL-CM6A-LR | IPSL (France) | 2.5° × 1.259° | −0.02 |
R | KACE-1-0-G | NIMS-KMA (Korea) | 1.875° × 1.25 | −0.07 |
S | MIROC6 | MIROC (Japan) | 1.406° × 1.406 | 0.08 |
T | MPI-ESM1-2-HR | MPI-M (Germany) | 0.938° × 0.938° | −0.24 |
U | MPI-ESM1-2-LR | MPI-M (Germany) | 1.875° × 1.875 | 0.15 |
V | MRI-ESM2-0 | MRI (Japan) | 1.125° × 1.125° | 0.24 |
W | NorESM2-LM | NCC (Norway) | 2.5° × 1.875 | 0.38 * |
X | NorESM2-MM | NCC (Norway) | 1.25° × 0.938° | 0.17 |
Y | TaiESM1 | AS-RCEC (Taiwan, China) | 1.25° × 0.938° | −0.25 |
a | MME | 0.43 ** | ||
b | PME | 0.62 ** |
Scenario Name | Forcing Category | SSP | 2100 Forcing/(W·m−2) |
---|---|---|---|
SSP1-2.6 | Low | SSP1(sustainability) | 2.6 |
SSP2-4.5 | Medium | SSP2(middle of the road) | 4.5 |
SSP3-7.0 | Medium to High | SSP3(regional rivalry) | 7.0 |
SSP5-8.5 | High | SSP5(fossil-fueled development) | 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Xu, C.; Liu, F.; Liu, Y.; Yin, G. Evaluation and Projection of Wind Speed in the Arid Region of Northwest China Based on CMIP6. Remote Sens. 2021, 13, 4076. https://doi.org/10.3390/rs13204076
Long Y, Xu C, Liu F, Liu Y, Yin G. Evaluation and Projection of Wind Speed in the Arid Region of Northwest China Based on CMIP6. Remote Sensing. 2021; 13(20):4076. https://doi.org/10.3390/rs13204076
Chicago/Turabian StyleLong, Yunxia, Changchun Xu, Fang Liu, Yongchang Liu, and Gang Yin. 2021. "Evaluation and Projection of Wind Speed in the Arid Region of Northwest China Based on CMIP6" Remote Sensing 13, no. 20: 4076. https://doi.org/10.3390/rs13204076