An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering
"> Figure 1
<p>The structure of a triple (Subject-property-Object), when related to a knowledge model (such as an ontology, <b>top</b>) and a set of data in tabular form (<b>bottom left</b>), provides a set of triples (<b>bottom center-right</b>).</p> "> Figure 2
<p>Ontology classification sorted by level of abstraction of the respective fields. The examples in the middle column are ontologies grouped by ontology type. The right column presents examples of entities that could be part of an ontology of the corresponding level of abstraction.</p> "> Figure 3
<p>Photograph of the NMR tomograph at BAM. Source: BAM.</p> "> Figure 4
<p>NMR Principles, adapted version from [<a href="#B5-remotesensing-13-02426" class="html-bibr">5</a>]. (<b>a</b>)—Initial state in a water-containing medium without magnetization. (<b>b</b>)—Alignment of the protons when the sample is exposed to a static magnetic field. (<b>c</b>)—Deflection of the resulting magnetization into the transverse plane (x-y) by a short radiofrequency pulse. (<b>d</b>)—The magnetization relaxes back into the equilibrium state after termination of the radio-frequency pulse. (<b>e</b>)—Resulting measurable NMR signal (exponential decay of NMR amplitude). (<b>f</b>)—Relaxation time distribution as a result of a numerical inversion of the measured decaying signal. When converted using a material constant ρ, the x-axis can be converted to pore sizes.</p> "> Figure 5
<p>Projected architecture development for the Mat-O-Lab initiative. Datasources refers to the source where raw data from experimental tests is stored. IDS stands for Integrated Data Storage: the different Rest-API allow raw-data to be transformed into triples (see <a href="#remotesensing-13-02426-f001" class="html-fig">Figure 1</a>) thanks to the connector; the triples are stored in the RDF-Triple Store.</p> "> Figure 6
<p>Digital workflow. The domain expert (DE) is at the center of the process.</p> "> Figure 7
<p>The goal of creating an endpoint is to automatize the populating process of the triplestore from the metadata files from experimental tests.</p> "> Figure 8
<p>Digital workflow modified to allow ontology elicitation. Placing the ontology engineer (OE) at the center of the Test Description process only responds to the need to critically analyze and document the semantic transformation depicted in the <a href="#remotesensing-13-02426-f006" class="html-fig">Figure 6</a>.</p> "> Figure 9
<p>Graphical representation of the knowledge base created from the <sup>1</sup>H NMR relaxometry test for humidity detection and porosity distribution. Some entities have been collapsed for better visualization. In the key the color codes are shown as encoded in the BWMD ontology file [<a href="#B105-remotesensing-13-02426" class="html-bibr">105</a>]. The shaded area 1 corresponds to the description of the content in the metadata file (zoom in <a href="#app1-remotesensing-13-02426" class="html-app">Appendix A</a> <a href="#remotesensing-13-02426-f0A1" class="html-fig">Figure A1</a>). The shaded area 2 corresponds to the description of the results data file (zoom in <a href="#app1-remotesensing-13-02426" class="html-app">Appendix A</a> <a href="#remotesensing-13-02426-f0A2" class="html-fig">Figure A2</a>). The shaded area 3 is a non-collapsed subset of area 1 that corresponds to the description of six variables of the NMR measurement used by the measurement machine software (zoom in <a href="#app1-remotesensing-13-02426" class="html-app">Appendix A</a> <a href="#remotesensing-13-02426-f0A3" class="html-fig">Figure A3</a>). It can be observed how each Quality is match to a xsd:Datatype (where the type of data to be stored is defined) and a rdfs:Literal (where the value of the Quality is stored).</p> "> Figure A1
<p>Zoom on <a href="#remotesensing-13-02426-f009" class="html-fig">Figure 9</a> Area 1: Description of the content in the metadata file.</p> "> Figure A2
<p>Zoom on <a href="#remotesensing-13-02426-f009" class="html-fig">Figure 9</a> Area 2: Description of the results data file.</p> "> Figure A3
<p>Zoom on <a href="#remotesensing-13-02426-f009" class="html-fig">Figure 9</a> Area 3. description of six variables of the NMR measurement used by the measurement machine software.</p> ">
Abstract
:1. Introduction
2. Background
2.1. The Use of Ontology Engineering in Materials Science
2.2. Ontologies: Definition and Types
2.3. Principles of 1H Nuclear Magnetic Resonance Relaxometry
2.4. Framework: Digital Workflow in Mat-O-Lab
3. Methodology. Application of Mat-O-Lab Methodology to 1H NMR Relaxation Test
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- US Infrastructure Scores C Minus Grade from American Society of Civil Engineers. Available online: httpss://www.equities.com/news/us-infrastructure-scores-c-minus-grade-from-american-society-of-civil-engineers (accessed on 19 April 2021).
- PricewaterhouseCoopers Global Transport Infrastructure Market: Outlook to 2025. Available online: https://www.pwc.rs/en/publications/global-transport-infrastructure-market-outlook-2025.html (accessed on 19 April 2021).
- Opinion | Making the Concrete and Steel We Need Doesn’t Have to Bake the Planet—The New York Times. Available online: https://www.nytimes.com/2021/03/04/opinion/climate-change-infrastructure.html (accessed on 16 April 2021).
- Bloch, F. Nuclear Induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Nagel, S.M.; Strangfeld, C.; Kruschwitz, S. Application of 1H Proton NMR Relaxometry to Building Materials—A Review. J. Magn. Reson. Open 2021, 6–7, 100012. [Google Scholar] [CrossRef]
- Suh, C.; Fare, C.; Warren, J.A.; Pyzer-Knapp, E.O. Evolving the Materials Genome: How Machine Learning Is Fueling the Next Generation of Materials Discovery. Annu. Rev. Mater. Res. 2020, 50, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Pasquetto, I.V.; Borgman, C.L.; Wofford, M.F. Uses and Reuses of Scientific Data: The Data Creators’ Advantage. Harv. Data Sci. Rev. 2019, 1. [Google Scholar] [CrossRef]
- Data Science and Big Data: An Environment of Computational Intelligence; Pedrycz, W.; Chen, S.-M. (Eds.) Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2017; Volume 24, ISBN 978-3-319-53473-2. [Google Scholar]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef] [PubMed]
- Berners-Lee, T.; Fischetti, M. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor; Paw Prints: Paradise, CA, USA, 2008; ISBN 978-1-4395-0036-1. [Google Scholar]
- Platform MaterialDigital. Available online: https://materialdigital.de/ (accessed on 15 April 2021).
- Fraunhofer Group MATERIALS. Available online: https://www.materials.fraunhofer.de/en.html (accessed on 15 April 2021).
- Materials Genome Initiative | WWW.MGI.GOV. Available online: https://www.mgi.gov/ (accessed on 15 April 2021).
- Aflow—Automatic—FLOW for Materials Discovery. Available online: http://aflowlib.org/ (accessed on 15 April 2021).
- NIMS Materials Database(MatNavi)—DICE: National Institute for Materials Science. Available online: https://mits.nims.go.jp/en/ (accessed on 15 April 2021).
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Open Materials Database. Available online: http://openmaterialsdb.se/ (accessed on 15 April 2021).
- Citrine Informatics. Available online: http://citrine.io/ (accessed on 15 April 2021).
- MaX | Materials Design at the Exascale a European Centre of Excellence. Available online: http://www.max-centre.eu/ (accessed on 15 April 2021).
- Draxl, C.; Scheffler, M. NOMAD: The FAIR Concept for Big Data-Driven Materials Science. MRS Bull. 2018, 43, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I. The Materials Data Facility: Data Services to Advance Materials Science Research. JOM 2016, 68, 2045–2052. [Google Scholar] [CrossRef]
- Materials Zone. Available online: https://www.materials.zone/ (accessed on 15 April 2021).
- Materially. Available online: https://www.materially.eu/en/ (accessed on 15 April 2021).
- Find Materials & Suppliers—Matmatch. Available online: https://matmatch.com/ (accessed on 15 April 2021).
- CMCL Innovations. Available online: https://cmclinnovations.com/ (accessed on 15 April 2021).
- Kalidindi, S.R. Data Science and Cyberinfrastructure: Critical Enablers for Accelerated Development of Hierarchical Materials. Int. Mater. Rev. 2015, 60, 150–168. [Google Scholar] [CrossRef]
- Kalidindi, S.R.; Medford, A.J.; McDowell, D.L. Vision for Data and Informatics in the Future Materials Innovation Ecosystem. JOM 2016, 68, 2126–2137. [Google Scholar] [CrossRef]
- Kalidindi, S.R. Data Infrastructure Elements in Support of Accelerated Materials Innovation: ELA, PyMKS, and MATIN. Integr. Mater. Manuf. Innov. 2019, 14, 441–454. [Google Scholar] [CrossRef]
- Morgado, J.F.; Ghedini, E.; Goldbeck, G.; Schmitz, G.J.; Friis, J.; de Baas, A.F. Mechanical Testing Ontology for Digital-Twins: A Roadmap Based on EMMO. In Proceedings of the Conference: International Workshop on Semantic Digital Twins (SeDiT 2020), Crete, Greece, 31 May–4 June 2020. [Google Scholar]
- Furini, F.; Rai, R.; Smith, B.; Colombo, G.; Krovi, V. Development of a Manufacturing Ontology for Functionally Graded Materials. In Proceedings of the 36th Computers and Information in Engineering Conference; American Society of Mechanical Engineers, Charlotte, NC, USA, 21–24 August 2016; Volume 1B, p. V01BT02A030. [Google Scholar]
- Li, H.; Armiento, R.; Lambrix, P. A Method for Extending Ontologies with Application to the Materials Science Domain. Data Sci. J. 2019, 18, 50. [Google Scholar] [CrossRef]
- Ashino, T.; Fujita, M. Definition of a Web Ontology for Design-Oriented Material Selection. Data Sci. J. 2006, 5, 52–63. [Google Scholar] [CrossRef]
- Benjamin, J.; Borst, P.; Akkermans, H.; Wielinga, B. Ontology construction for technical domains. In Advances in Knowledge Acquisition; Shadbolt, N., O’Hara, K., Schreiber, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1076, pp. 98–114. ISBN 978-3-540-61273-5. [Google Scholar]
- Zhang, X.; Hu, C.; Zhao, Q.; Zhao, C. Semantic Data Integration in Materials Science Based on Semantic Model. In Proceedings of the Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007), Bangalore, India, 10–13 December 2007; pp. 320–327. [Google Scholar]
- Lin, W.; Hu, C.; Li, Y.; Cheng, X. Similarity-Based Ontology Mapping in Material Science Domain. In Proceedings of the 9th International Conference on Web Information Systems and Technologies, Aachen, Germany, 8–10 May 2013; SciTePress—Science and and Technology Publications: Aachen, Germany, 2013; pp. 265–269. [Google Scholar]
- Ghiringhelli, L.M.; Carbogno, C.; Levchenko, S.; Mohamed, F.; Huhs, G.; Lueders, M.; Oliveira, M.; Scheffler, M. Towards a Common Format for Computational Material Science Data. arXiv 2016, arXiv:1607.04738. [Google Scholar]
- Li, H.; Armiento, R.; Lambrix, P. An Ontology for the Materials Design Domain. arXiv 2020, arXiv:2006.07712. [Google Scholar]
- Zhao, S.; Qian, Q. Ontology Based Heterogeneous Materials Database Integration and Semantic Query. AIP Adv. 2017, 7, 105325. [Google Scholar] [CrossRef]
- Pigazzi, R.; Confalonieri, C.; Rossoni, M.; Gariboldi, E.; Colombo, G. Ontologies as a Tool for Design and Material Engineers; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2021. [Google Scholar]
- Takahashi, L.; Miyazato, I.; Takahashi, K. Redesigning the Materials and Catalysts Database Construction Process Using Ontologies. J. Chem. Inf. Model. 2018, 58, 1742–1754. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, L.; Takahashi, K. Visualizing Scientists’ Cognitive Representation of Materials Data through the Application of Ontology. J. Phys. Chem. Lett. 2019, 10, 7482–7491. [Google Scholar] [CrossRef] [PubMed]
- Uschold, M.; King, M. Towards a Methodology for Building Ontologies. In Proceedings of the Conjunction with IJCAI-95, Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, QC, Canada, 19–21 August 1995. [Google Scholar]
- Uschold, M.; Gruninger, M. Ontologies: Principles, Methods and Applications. Knowl. Eng. Rev. 1996, 11, 93–136. [Google Scholar] [CrossRef] [Green Version]
- Shanthi Rani, M.; John, S.; Shah, N. Proposal of an Hybrid Methodology for Ontology Development by Extending the Process Models of Software Engineering. IJITCS 2016, 6, 37–44. [Google Scholar] [CrossRef]
- John, S.; Shah, N.; Stewart, C.; Samlov, L. Software Centric Innovative Methodology for Ontology Development. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Funchal, Madeira, Portugal, 1–3 November 2017; SCITEPRESS—Science and Technology Publications: Funchal, Madeira, Portugal, 2017; pp. 139–146. [Google Scholar]
- Abdelghany, A.; Darwish, N.; Hefni, H. An Agile Methodology for Ontology Development. IJIES 2019, 12, 170–181. [Google Scholar] [CrossRef]
- Copeland, M.; Brown, A.; Parkinson, H.; Stevens, R. The SWO Project: A Case Study of Applying Agile Ontology Engineering Methods in Community Driven Ontologies. 6. In Proceedings of the International Conference on Biomedical Ontology (ICBO), Graz, Austria, 21–25 July 2012. [Google Scholar]
- Kotis, K.; Vouros, G.A. Human-Centered Ontology Engineering: The HCOME Methodology. Knowl. Inf. Syst. 2006, 10, 109–131. [Google Scholar] [CrossRef]
- Baonza, M. NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2010. [Google Scholar]
- Sure, Y.; Staab, S.; Studer, R. On-To-Knowledge Methodology (OTKM). In Handbook on Ontologies; Staab, S., Studer, R., Eds.; International Handbooks on Information, Systems; Springer: Berlin/Heidelberg, Germany, 2004; pp. 117–132. ISBN 978-3-540-24750-0. [Google Scholar]
- Yadav, U.; Singh Narula, G.; Duhan, N.; Jain, V. Ontology Engineering and Development Aspects: A Survey. IJEME 2016, 6, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Simperl, E.; Luczak-Rösch, M. Collaborative Ontology Engineering: A Survey. Knowl. Eng. Rev. 2014, 29, 101–131. [Google Scholar] [CrossRef] [Green Version]
- Stadlhofer, B.; Salhofer, P.; Durlacher, A. An Overview of Ontology Engineering Methodologies in the Context of Public Administration. In Proceedings of the Seventh International Conference on Advances in Semantic Processing, Porto, Portugal, 29 September–3 October 2013; pp. 36–42. [Google Scholar]
- Keet, M. An Introduction to Ontology Engineering; University of Cape Town: Cape Town, South Africa, 2020. [Google Scholar]
- Kotis, K.I.; Vouros, G.A.; Spiliotopoulos, D. Ontology Engineering Methodologies for the Evolution of Living and Reused Ontologies: Status, Trends, Findings and Recommendations. Knowl. Eng. Rev. 2020, 35, e4. [Google Scholar] [CrossRef]
- Rudnicki, R.; Smith, B.; Malyuta, T.; Mandrick, W. White Paper; Best Practices of Ontology Development; National Institute of Standards and Technolog: Gaithersburg, MD, USA, 2016. [Google Scholar]
- What Is an Ontology and Why We Need It. Available online: https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html (accessed on 15 April 2021).
- Bergman, M.K. A Reference Guide to Ontology Best Practices. Available online: http://www.mkbergman.com/911/a-reference-guide-to-ontology-best-practices/ (accessed on 15 April 2021).
- BMBF-Internetredaktion Bekanntmachung zur Förderung von Zuwendungen von Vorhaben im Rahmen der Initiative zur Digitalisierung der Materialforschung in Deutschland (MaterialDigital)—BMBF. Available online: https://www.bmbf.de/foerderungen/bekanntmachung-2627.html (accessed on 15 April 2021). (In German).
- Fraunhofer Group for Materials and Components. Available online: https://www.fraunhofer.de/en/institutes/institutes-and-research-establishments-in-germany/fraunhofer-groups/materials-components.html (accessed on 15 April 2021).
- Bundesanstalt Für Materialforschung Und-Prüfung. Available online: https://www.bam.de/Navigation/EN/Home/home.html (accessed on 15 April 2021).
- Digital Workflow Steps Using the Graph Designer Tool—Wiki—Iwm-Hub/Mdbw_rdf. Available online: https://gitlab.cc-asp.fraunhofer.de/iwm-hub/mdbw_rdf/-/wikis/DIGITAL-WORKFLOW-STEPS-USING-THE-GRAPH-DESIGNER-TOOL (accessed on 15 April 2021).
- Gruber, T.R. A Translation Approach to Portable Ontology Specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Borst, W.N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse; Centre for Telematics and Information Technology: Enschede, The Netherlands, 1997; ISBN 978-90-365-0988-6. [Google Scholar]
- Lemaignan, S.; Siadat, A.; Dantan, J.-Y.; Semenenko, A. MASON: A Proposal for an Ontology of Manufacturing Domain. In Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), Prague, Czech Republic, 15–16 June 2006; pp. 195–200. [Google Scholar]
- RDF—Semantic Web Standards. Available online: https://www.w3.org/RDF/ (accessed on 15 April 2021).
- World Wide Web Consortium (W3C). Available online: https://www.w3.org/ (accessed on 15 April 2021).
- RDF Schema 1.1. Available online: https://www.w3.org/TR/rdf-schema/ (accessed on 15 April 2021).
- OWL 2 Web Ontology Language Document Overview (Second Edition). Available online: https://www.w3.org/TR/owl2-overview/ (accessed on 15 April 2021).
- Lassila, O.; McGuinness, D. The Role of Frame-Based Representation on the Semantic Web. Commun. ACM 1985, 28, 904–920. [Google Scholar]
- Garbacz, P.; Kutz, O. Formal Ontology in Information Systems: Proceedings of the Eighth International Conference (FOIS 2014); IOS Press: Amsterdam, Switzerland, 2014; ISBN 978-1-61499-438-1. [Google Scholar]
- Basic Formal Ontology (BFO) | Home. Available online: https://basic-formal-ontology.org/ (accessed on 15 April 2021).
- Laboratory for Applied Ontology—DOLCE. Available online: http://www.loa.istc.cnr.it/dolce/overview.html (accessed on 15 April 2021).
- The Suggested Upper Merged Ontology (SUMO)—Ontology Portal. Available online: https://www.ontologyportal.org/ (accessed on 15 April 2021).
- General Formal Ontology (GFO) | Onto-Med Research Group. Available online: https://www.onto-med.de/ontologies/gfo (accessed on 15 April 2021).
- Partridge, C.; Mitchell, A.; Cook, A.; Sullivan, J.; West, M. A Survey of Top-Level Ontologies—To Inform the Ontological Choices for a Foundation Data Model. CDBB 2020. [Google Scholar] [CrossRef]
- Rudnicki, R. An Overview of the Common Core Ontologies; CUBRC, Inc.: Buffalo, NY, USA, 2019. [Google Scholar]
- Hagedorn, T.J.; Smith, B.; Krishnamurty, S.; Grosse, I. Interoperability of Disparate Engineering Domain Ontologies Using Basic Formal Ontology. J. Eng. Des. 2019, 30, 625–654. [Google Scholar] [CrossRef] [Green Version]
- EMMO—The European Materials Modelling Council. Available online: https://emmc.info/emmo-info/ (accessed on 15 April 2021).
- Chemical Entities of Biological Interest (ChEBI). Available online: https://www.ebi.ac.uk/chebi/ (accessed on 15 April 2021).
- NCOR-US/CHAMP; NCOR-US: Buffalo, NY, USA, 2020.
- Kitamura, Y.; Takafuji, S.; Mizoguchi, R. Towards a Reference Ontology for Functional Knowledge Interoperability. In Proceedings of the 33rd Design Automation Conference, Parts A and B, ASMEDC, Las Vegas, NV, USA, 4–7 September 2007; Volume 6, pp. 111–120. [Google Scholar]
- Elmhadhbi, L.; Karray, M.H.; Archimède, B. Toward the Use of Upper Level Ontologies for Semantically Interoperable Systems: An Emergency Management Use Case; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar]
- Vetere, G. Formal Ontology in a Relativistic Setting. In Proceedings of the Metadata and Semantic Research; Garoufallou, E., Fallucchi, F., William De Luca, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 379–384. [Google Scholar]
- Mascardi, V.; Locoro, A.; Rosso, P. Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation. IEEE Trans. Knowl. Data Eng. 2010, 22, 609–623. [Google Scholar] [CrossRef]
- Euzenat, J.; Shvaiko, P. Ontology Matching; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-38720-3. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, G.M.; Logging, N.; Xi, F. NMR Logging Principles & Applications; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Kimmich, R. NMR Tomography Diffusometry Relaxometry; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Blümich, B.; Haber-Pohlmeier, S.; Zia, W. Compact NMR; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, M.G. NMR Logging—Principles and Applications; Halliburton Energy Services: Houston, TX, USA, 1999. [Google Scholar]
- Stelzner, L.; Powierza, B.; Oesch, T.; Dlugosch, R.; Weise, F. Thermally-Induced Moisture Transport in High-Performance Concrete Studied by X-Ray-CT and 1H-NMR. Constr. Build. Mater. 2019, 224, 600–609. [Google Scholar] [CrossRef]
- Brizi, L.; Camaiti, M.; Bortolotti, V.; Fantazzini, P.; Blümich, B.; Haber-Pohlmeier, S. One and Two-Dimensional NMR to Evaluate the Performance of Consolidants in Porous Media with a Wide Range of Pore Sizes: Applications to Cultural Heritage. Microporous Mesoporous Mater. 2018, 269, 186–190. [Google Scholar] [CrossRef]
- Gussoni, M.; Greco, F.; Bonazzi, F.; Vezzoli, A.; Botta, D.; Dotelli, G.; Sora, I.N.; Pelosato, R.; Zetta, L. 1H NMR Spin-Spin Relaxation and Imaging in Porous Systems: An Application to the Morphological Study of White Portland Cement during Hydration in the Presence of Organics. Magn. Reson. Imaging 2004, 22, 877–889. [Google Scholar] [CrossRef]
- Bede, A.; Scurtu, A.; Ardelean, I. NMR Relaxation of Molecules Confined inside the Cement Paste Pores under Partially Saturated Conditions. Cem. Concr. Res. 2016, 89, 56–62. [Google Scholar] [CrossRef]
- Bligh, M.W.; d’Eurydice, M.N.; Lloyd, R.R.; Arns, C.H.; Waite, T.D. Investigation of Early Hydration Dynamics and Microstructural Development in Ordinary Portland Cement Using 1H NMR Relaxometry and Isothermal Calorimetry. Cem. Concr. Res. 2016, 83, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Naber, C.; Kleiner, F.; Becker, F.; Nguyen-Tuan, L.; Rößler, C.; Etzold, M.A.; Neubauer, J. C-S-H Pore Size Characterization Via a Combined Nuclear Magnetic Resonance (NMR)–Scanning Electron Microscopy (SEM) Surface Relaxivity Calibration. Materials 2020, 13, 1779. [Google Scholar] [CrossRef]
- Kruschwitz, S.; Halisch, M.; Dlugosch, R.; Prinz, C. Toward a Better Understanding of Low-Frequency Electrical Relaxation—An Enhanced Pore Space Characterization. Geophysics 2020, 85, MR257–MR270. [Google Scholar] [CrossRef]
- Rifai, H.; Staude, A.; Meinel, D.; Illerhaus, B.; Bruno, G. In-Situ Pore Size Investigations of Loaded Porous Concrete with Non-Destructive Methods. Cem. Concr. Res. 2018, 111, 72–80. [Google Scholar] [CrossRef]
- Sharma, S.; Casanova, F.; Wache, W.; Segre, A.; Blümich, B. Analysis of Historical Porous Building Materials by the NMR-MOUSE. Magn. Reson. Imaging 2003, 21, 249–255. [Google Scholar] [CrossRef]
- Weise, F.; Kind, T.; Stelzner, L.; Wieland, M. Dunkelfärbung Der Betonfahrbahndecke Im AKR-Kontext. Beton-und Stahlbetonbau 2018, 113, 647–655. [Google Scholar] [CrossRef]
- BWMD Mid Level Ontology—Summary | Materials Open Laboratory MatPortal.Org. Available online: https://matportal.org/ontologies/BWMD-MID (accessed on 15 April 2021).
- BWMD Domain Ontology—Summary | Materials Open Laboratory MatPortal.Org. Available online: https://matportal.org/ontologies/BWMD-DOMAIN (accessed on 15 April 2021).
- English—Fraunhofer IWM. Available online: https://www.iwm.fraunhofer.de/en.html (accessed on 15 April 2021).
- Arp, R.; Smith, B.; Spear, A.D. Principles of Best Practice I: Domain Ontology Design; The MIT Press: Cambridge, MA, USA, 2015; ISBN 978-0-262-32958-3. [Google Scholar]
- BWMD_Ontology_mid.Owl · Master · EMI_Datamanagement/BWMD_Ontology. Available online: https://gitlab.cc-asp.fraunhofer.de/EMI_datamanagement/bwmd_ontology/-/blob/master/BWMD_ontology_mid.owl (accessed on 26 April 2021).
- MR-CAT || Core Analyzing Tomograph. Available online: https://www.pure-devices.com/index.php/products/products-mr-cat.html (accessed on 15 April 2021).
- IsAbout-Ontobee: IAO. Available online: http://www.ontobee.org/ontology/IAO?iri=http://purl.obolibrary.org/obo/IAO_0000136 (accessed on 15 April 2021).
- Information Content Entity—Ontobee: IAO. Available online: http://www.ontobee.org/ontology/IAO?iri=http://purl.obolibrary.org/obo/IAO_0000030 (accessed on 15 April 2021).
- Entity—Ontobee: BFO. Available online: http://www.ontobee.org/ontology/BFO?iri=http://purl.obolibrary.org/obo/BFO_0000001 (accessed on 15 April 2021).
Classes from BWMD Ontology | (*) | Properties from BWMD Ontology | (*) | Datatypes from BWMD Ontology | (*) |
---|---|---|---|---|---|
Angle (mid:BWMD_00098) | 3 | containsValuesOfType (mid:BWMD_00329) | 4 | ^^rdfs:Literal | 19 |
Column (mid:BWMD_00287) | 4 | hasAttachedDataSet (mid:BWMD_00326) | 1 | ^^xsd:decimal | 17 |
CSVFile (mid:BWMD_00213) | 1 | hasControlInfo (mid:BWMD_00339) | 1 | ^^xsd:string | 4 |
DataAcquisitionSoftware (mid:BWMD_00248) | 1 | hasDoubleLiteral (mid:BWMD_00314) | 16 | ^^xsd:integer | 5 |
DataSet (mid:BWMD_00024) | 4 | hasIdentifier (mid:BWMD_00319) | 3 | ^^xsd:boolean | 1 |
Description (mid:BWMD_00140) | 1 | hasIntegerLiteral (mid:BWMD_00316) | 4 | ||
Frequency (mid:BWMD_00146) | 1 | hasOutput (mid:BWMD_00331) | 2 | TOTAL | 46 |
Length (mid:BWMD_00127) | 7 | hasPart (mid:BWMD_00323) | 21 | ||
NMRCalibrationMeasurement | 1 | hasParticipant (mid:BWMD_00328) | 4 | ||
NonDestructiveTesting (domain:BWMD_00570) | 1 | hasStringLiteral (mid:BWMD_00313) | 4 | ||
ObjectID (domain:BWMD_00608) | 1 | hasTextualInfo (mid:BWMD_00334) | 1 | ||
ProcessDataSet (mid:BWMD_00068) | 2 | hasUnitSymbol (mid:BWMD_00312) | 18 | ||
ProcessParameterSet (mid:BWMD_00009) | 16 | hasValue (mid:BWMD_00315) | 14 | ||
Quantity (mid:BWMD_00010) | 3 | isDefinedBy (mid:BWMD_00332) | 11 | ||
SoftwareName (mid:BWMD_00241) | 1 | isInputFor (mid:BWMD_00337) | 1 | ||
Specimen (mid:BWMD_00048) | 2 | precedes (mid:BWMD_00335) | 1 | ||
SpecimenID (domain:BWMD_00607) | 1 | refersTo (mid:BWMD_00321) | 11 | ||
TechnologicalProduct (mid:BWMD_00036) | 1 | ||||
Time (mid:BWMD_00122) | 7 | TOTAL | 117 | ||
Velocity (mid:BWMD_00165) | 1 | ||||
TOTAL | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Torres, B.; Völker, C.; Nagel, S.M.; Hanke, T.; Kruschwitz, S. An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sens. 2021, 13, 2426. https://doi.org/10.3390/rs13122426
Moreno Torres B, Völker C, Nagel SM, Hanke T, Kruschwitz S. An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sensing. 2021; 13(12):2426. https://doi.org/10.3390/rs13122426
Chicago/Turabian StyleMoreno Torres, Benjamí, Christoph Völker, Sarah Mandy Nagel, Thomas Hanke, and Sabine Kruschwitz. 2021. "An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering" Remote Sensing 13, no. 12: 2426. https://doi.org/10.3390/rs13122426
APA StyleMoreno Torres, B., Völker, C., Nagel, S. M., Hanke, T., & Kruschwitz, S. (2021). An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sensing, 13(12), 2426. https://doi.org/10.3390/rs13122426