GPR Virtual Guidance System for Subsurface 3D Imaging
<p>General workflow of the guidance program.</p> "> Figure 2
<p>Photo of the large rectangle survey line. The black dots are ticks for 0.2 m intervals [<a href="#B15-remotesensing-13-02154" class="html-bibr">15</a>]. The trial started from the top right corner, and surveyed in a clockwise direction.</p> "> Figure 3
<p>Deviation distribution of the large rectangle (red rectangle in <a href="#remotesensing-13-02154-f002" class="html-fig">Figure 2</a>) with TTS logging rate = 0.5 s [<a href="#B15-remotesensing-13-02154" class="html-bibr">15</a>].</p> "> Figure 4
<p>Illustration of GPR traverse survey parameters.</p> "> Figure 5
<p>Interface of the guidance system (blue box: first method distance offset; green box: second method of WCB comparison; red box: third method direction comparison).</p> "> Figure 6
<p>Illustrations of method 2 (<b>a</b>) and method 3 (<b>b</b>).</p> "> Figure 7
<p>Main instrumentation used in this study and data flow.</p> "> Figure 8
<p>Illustrations of test sites: (<b>a</b>) laboratory test; (<b>b</b>) field test.</p> "> Figure 9
<p>(<b>a</b>,<b>c</b>,<b>e</b>) The survey paths of methods T1, T2, and T3, respectively. (<b>b</b>,<b>d</b>,<b>f</b>) Comparisons of these paths with the designed path (red).</p> "> Figure 10
<p>Distribution of the offset errors from three paths in the laboratory test.</p> "> Figure 11
<p>(<b>a</b>,<b>c</b>) The survey paths of methods T2 and T3, respectively; (<b>b</b>,<b>d</b>) the comparisons of such paths with the designed path (red).</p> "> Figure 12
<p>Distribution of offset errors from two paths on the site test.</p> "> Figure 13
<p>(<b>a</b>–<b>c</b>) C-scans for methods T1, T2, and T3, respectively.</p> "> Figure 14
<p>(<b>a</b>,<b>c</b>) C-scans of method T2; (<b>b</b>,<b>d</b>) C-scans of method T3; (<b>a</b>,<b>b</b>) for a depth of 0.8–0.9 m; (<b>c</b>,<b>d</b>) for a depth of 0.9–1.0 m.</p> ">
Abstract
:1. Introduction
2. The Virtual Guidance System
2.1. LabVIEW Virtual Guidance System
2.2. Latency Check
2.3. Positioning Correction Guidance
2.3.1. Offset Distance Detection
2.3.2. WCB Correction
2.3.3. Comparison of Direction
3. Validation Experiment
3.1. Instrumentation
3.2. Laboratory Test
3.3. Field Test
3.4. GPR Signal Processing and C-Scan Generation
4. Result and Analysis
4.1. Survey Path Analysis
4.1.1. Laboratory Test Path Result
4.1.2. Field Test Path Result
4.1.3. Path Pattern
4.2. Enhancing Quality of C-Scan Images
4.2.1. Laboratory Test C-Scan Result Analysis
4.2.2. Field Test C-scan Result Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- Annan, A.P. Ground Penetrating Radar Applications, Principles, Procedures; Sensors and Software: Mississauga, ON, Canada, 2004. [Google Scholar]
- Goodman, D.; Nishimura, Y.; Rogers, J.D. GPR (Ground Penetrating Radar) Time Slices in Archaeological Prospection. Archaeol. Prospect. 1995, 2, 85–89. [Google Scholar] [CrossRef]
- Urbini, S.; Vittuari, L.; Gandolfi, S. GPR and GPS Data integration: Examples of application in Antarctica. Ann. Geophys. 2001, 44. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Abraham, D.M.; Mao, P. Estimating features of underground utilities: Hybrid GPR/GPS approach. J. Comput. Civ. Eng. 2016, 30, 04014108. [Google Scholar] [CrossRef]
- Ai, S.; Wang, Z.E.D.; Holmen, K.; Tan, Z.; Zhou, C.; Sun, W. Topography, ice thickness and ice volume of the glacier Pedersenbreen in Svalbard, using GPR and GPS. Polar Res. 2014, 33, 18533. [Google Scholar] [CrossRef] [Green Version]
- Chicarella, S.; D’Alvano, A.; Ferrara, V.; Frezza, F.; Pajewski, L. Inertial and GPS data integration for positioning and tracking of GPR. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Chicarella, S.; Ferrara, V.; Frezza, F.; Pajewski, A.D.L. Improvement of GPR tracking by using inertial and GPS combined data. In Proceedings of the 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–5. [Google Scholar]
- Ferrara, V.; Pietrelli, A.; Chicarella, S.; Pajewski, L. GPR/GPS/IMU system as buried objects locator. Measurement 2018, 114, 534–541. [Google Scholar] [CrossRef]
- Roberts, R.; Cist, D.; Andreas, K. Full-Resolution GPR Imaging Applied to Utility Surveying. Insights from multi-polarization data obtained over a test pit. In Proceedings of the IWAGPR 2009, Granada, Spain, 27–29 May 2009; pp. 126–131. [Google Scholar]
- Pérez-Gracia, V.; di Capua, D.; González-Drigo, R.; Caselles, O.; Pujades, L.; Salinas, V. GPR resolution in Cultural Heritage applications, in Ground Penetrating Radar (GPR). In Proceedings of the 2010 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Luo, T.X.; Lai, W.W.; Chang, R.K.; Goodman, D. GPR imaging criteria. J. Appl. Geophys. 2019, 165, 37–48. [Google Scholar] [CrossRef]
- Le, T.; Gibb, S.; Pham, N.; La, H.M.; Falk, L.; Berendsen, T. Autonomous robotic system using non-destructive evaluation methods for bridge deck inspection. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3672–3677. [Google Scholar]
- Boniger, U.; Tronicke, J. On the potential of kinematic GPR surveying using a self-tracking total station: Evaluating system crosstalk and latency. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3792–3798. [Google Scholar] [CrossRef]
- Chang, K.W.R. Real-time Tracking and Error Analysis of Ground Penetrating Radar Position by Auto-tracking total station. Master’s Thesis, Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, Hong Kong, 2016. [Google Scholar]
- Kouros, G.; Kotavelis, I.; Skartados, E.; Giakoumis, D.; Tzovaras, D.; Simi, A.; Manacorda, G. 3d underground mapping with a mobile robot and a gpr antenna. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3218–3224. [Google Scholar]
- Slob, E.C.; Groenenboom, J.; Fokkema, J.T. Automated acquisition and processing of 3D GPR data for object detection and characterization. Subsurf. Sens. Technol. Appl. 2003, 4, 5–18. [Google Scholar] [CrossRef]
- Wiggenhauser, H.; Stoppel, M.; Dobmann, G.; Kurz, J.; Raupach, M.; Reichling, A. BETOSCAN—An instrumented mobile robot system for the diagnosis of reinforced concrete floors. In Concrete Repair, Rehabilitation and Retrofitting II; CRC Press: Boca Raton, FL, USA, 2008; pp. 255–256. [Google Scholar] [CrossRef]
- Bitter, R.; Mohiuddin, T.; Nawrocki, M. LabVIEW: Advanced Programming Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Goodman, D. GPR-SLICE. Ground Penetrating Radar Imaging Software; User’s Manual; Geophysical Archaeometry Laboratory: Los Angeles, CA, USA, 2004. [Google Scholar]
- Lai, W.W. Specification for Non-Destructive Testing, Surveying, Imaging and Diagnosis for Underground Utilities 1,2 Ground Penetrating Radar; UUS-SPEC; The Hong Kong Polytechnic University: Hong Kong, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, G.P.H.; Chang, R.K.W.; Luo, T.X.H.; Lai, W.W.L. GPR Virtual Guidance System for Subsurface 3D Imaging. Remote Sens. 2021, 13, 2154. https://doi.org/10.3390/rs13112154
Ching GPH, Chang RKW, Luo TXH, Lai WWL. GPR Virtual Guidance System for Subsurface 3D Imaging. Remote Sensing. 2021; 13(11):2154. https://doi.org/10.3390/rs13112154
Chicago/Turabian StyleChing, Gabbo P. H., Ray K. W. Chang, Tess X. H. Luo, and Wallace W. L. Lai. 2021. "GPR Virtual Guidance System for Subsurface 3D Imaging" Remote Sensing 13, no. 11: 2154. https://doi.org/10.3390/rs13112154