Comparison of Remotely Sensed Evapotranspiration Models Over Two Typical Sites in an Arid Riparian Ecosystem of Northwestern China
<p>Locations of the two study sites (<b>a</b>); photos of the <span class="html-italic">Tamarix</span> site (<b>b</b>) and the <span class="html-italic">Populus</span> site (<b>c</b>); locations of the flux tower and its appropriate footprint area for the <span class="html-italic">Tamarix</span> site (<b>d</b>) and the <span class="html-italic">Populus</span> site (<b>e</b>) shown with a Landsat image. The yellow squares in (<b>d</b>,<b>e</b>) represent the pixels where the flux tower of the <span class="html-italic">Tamarix</span> site and the flux tower of the <span class="html-italic">Populus</span> site located, respectively. The red boxes in (<b>d</b>,<b>e</b>) denote the appropriate footprint area measured by the flux tower of the <span class="html-italic">Tamarix</span> site and by the flux tower of the <span class="html-italic">Populus</span> site, respectively.</p> "> Figure 2
<p>The filtered NDVI and the interpolated daily NDVI for the 2017 growing season of the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the 2016 growing season of the <span class="html-italic">Populus</span> site (<b>b</b>). The performance of the interpolation was estimated by the determination coefficient (R<sup>2</sup>), Nash–Sutcliffe efficiency (NSE), and the root mean square error (RMSE). The R<sup>2</sup>, NSE, and RMSE were 0.921, 0.887, and 0.017 for the <span class="html-italic">Tamarix</span> site, respectively. The R<sup>2</sup>, NSE, and RMSE were 0.698, 0.582, and 0.010 for the <span class="html-italic">Populus</span> site, respectively.</p> "> Figure 3
<p>Regression of ET as a function of daily maximum air temperature for the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the <span class="html-italic">Populus</span> site (<b>b</b>). The red and blue lines are the fitted lines, using a logistic function and an exponential function, respectively.</p> "> Figure 4
<p>Observed ET versus simulated ET for the validation dataset of the <span class="html-italic">Tamarix</span> site (<b>a</b>–<b>h</b>) and the validation dataset of the <span class="html-italic">Populus</span> site (<b>i</b>–<b>p</b>). The red and black dashed lines are the regression lines and the 1:1 lines, respectively.</p> "> Figure 5
<p>Scatter plots of the observed and simulated ET for each day throughout the 2017 growing season of the <span class="html-italic">Tamarix</span> site (<b>a</b>–<b>h</b>) and each day throughout the 2016 growing season of the <span class="html-italic">Populus</span> site (<b>i</b>–<b>p</b>). The red and black dashed lines are the regression lines and the 1:1 lines, respectively.</p> "> Figure 6
<p>Daily variation process of the observed and simulated daily ET for the 2017 growing season of the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the 2016 growing season of the <span class="html-italic">Populus</span> site (<b>b</b>).</p> "> Figure 7
<p>Variability of the mean monthly ET for the growing season from 2013 to 2018, estimated by the eight ERSETMs for the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the <span class="html-italic">Populus</span> site (<b>b</b>).</p> "> Figure 8
<p>Mean ET of the growing season from 2013 to 2018, estimated by the eight ERSETMs for the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the <span class="html-italic">Populus</span> site (<b>b</b>).</p> "> Figure 9
<p>Interannual variability of ET for the growing season from 2013 to 2018, estimated by the eight ERSETMs for the <span class="html-italic">Tamarix</span> site (<b>a</b>) and the <span class="html-italic">Populus</span> site (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. ERSETMs
2.2. Site Description
2.3. Data and Processing
2.3.1. ET Data
2.3.2. Ta,m and ET0 Data
2.3.3. NDVI Data
2.4. Calibration of ERSETMs
2.5. Evaluation of Model Performance
3. Results
3.1. Validation of ERSETMs
3.2. Comparison of Estimates from ERSETMs
3.2.1. Statistical Performance of ERSETMs
3.2.2. Performance in Daily Variations
3.2.3. Differences in Monthly and Seasonal Scales
4. Discussion
4.1. Primary Sources of Different Performance Across ERSETMs
4.1.1. Characterization of Meteorological Conditions
4.1.2. Effects of Vegetation Factors
4.1.3. Effects of Model Structures
4.2. Considerations for the Applications of ERSETMs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Pan, M.; Mu, Q.; Shi, X.; Mao, J.; Brümmer, C.; Jassal, R.S.; Krishnan, P.; Li, J.; Black, T.A. Comparing Evapotranspiration from Eddy Covariance Measurements, Water Budgets, Remote Sensing, and Land Surface Models over Canada. J. Hydrometeorol. 2015, 16, 1540–1560. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Cleverly, J.R.; Dahm, C.N.; Thibault, J.R.; Mcdonnell, D.E.; Coonrod, J.E.A. Riparian ecohydrology: Regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico. Hydrol. Process. 2006, 20, 3207–3225. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M.; Rockström, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Earthscan: London and Sterling, UK, 2004; pp. 1–247. [Google Scholar]
- Glenn, E.P.; Nagler, P.L.; Shafroth, P.B.; Jarchow, C.J. Effectiveness of environmental flows for riparian restoration in arid regions: A tale of four rivers. Ecol. Eng. 2017, 106, 695–703. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chen, Y.P.; Xu, C.C.; Ye, Z.X.; Li, Z.Q.; Zhu, C.G.; Ma, X.D. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2009, 24, 170–177. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Eamus, D.; Zolfaghar, S.; Villalobos-Vega, R.; Cleverly, J.; Huete, A. Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 2015, 19, 4229–4256. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Anderson, S.; Hassanli, A.M.; Kazemi, F. Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Urban Water J. 2014, 12, 380–393. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, P.; Shao, M.; Luo, Y.; Zhu, X. Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate. Agric. For. Meteorol. 2014, 194, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Luo, Y.; Shao, M.; Zhang, P.; Zhu, X. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin. Sci. China Earth Sci. 2015, 58, 1–11. [Google Scholar] [CrossRef]
- Nagler, P.L.; Cleverly, J.; Glenn, E.; Lampkin, D.; Huete, A.; Wan, Z. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Rem. Sens. Environ. 2005, 94, 17–30. [Google Scholar] [CrossRef]
- Orellana, F.; Verma, P.; Loheide, S.P.; Daly, E. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wang, P.; Niu, G.-Y.; Fang, Y.-H.; Wu, R.-J.; Yu, J.-J.; Yuan, G.-F.; Pozdniakov, S.P.; Scott, R.L. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake. Water Resour. Res. 2018, 54, 1560–1575. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Scott, R.L.; Cable, W.L.; Huxman, T.E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. J. Arid Environ. 2008, 72, 1232–1246. [Google Scholar] [CrossRef]
- Bunting, D.P.; Kurc, S.A.; Glenn, E.P.; Nagler, P.L.; Scott, R.L. Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions. J. Arid Environ. 2014, 111, 42–52. [Google Scholar] [CrossRef]
- Nagler, P.; Morino, K.; Murray, R.S.; Osterberg, J.; Glenn, E. An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. I. Description of Method. Remote Sens. 2009, 1, 1273–1297. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens. 2013, 5, 3849–3871. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Scott, R.L.; Nguyen, U.; Nagler, P.L. Wide-area ratios of evapotranspiration to precipitation in monsoon-dependent semiarid vegetation communities. J. Arid Environ. 2015, 117, 84–95. [Google Scholar] [CrossRef]
- Yuan, G.; Zhu, X.; Tang, X.; Du, T.; Yi, X. A Species-Specific and spatially-Explicit Model for Estimating Vegetation Water Requirements in Desert Riparian Forest Zones. Water Resour. Manag. 2016, 30, 1–19. [Google Scholar] [CrossRef]
- Jarchow, C.J.; Nagler, P.L.; Glenn, E.P.; Ramírez-Hernández, J.; Rodríguez-Burgueño, J.E. Evapotranspiration by remote sensing: An analysis of the Colorado River Delta before and after the Minute 319 pulse flow to Mexico. Ecol. Eng. 2017, 106, 725–732. [Google Scholar] [CrossRef]
- Shanafield, M.; Gutiérrez-Jurado, H.; Rodríguez-Burgueño, J.E.; Ramírez-Hernández, J.; Jarchow, C.J.; Nagler, P.L. Short- and long-term evapotranspiration rates at ecological restoration sites along a large river receiving rare flow events. Hydrol. Process. 2017, 31, 4328–4337. [Google Scholar] [CrossRef]
- Nagler, P.L.; Doody, T.M.; Glenn, E.P.; Jarchow, C.J.; Barreto-Muñoz, A.; Didan, K. Wide-area estimates of evapotranspiration by red gum (Eucalyptus camaldulensis) and associated vegetation in the Murray–Darling River Basin, Australia. Hydrol. Process. 2016, 30, 1376–1387. [Google Scholar] [CrossRef]
- Murray, R.S.; Nagler, P.; Morino, K.; Glenn, E. An Empirical Algorithm for Estimating Agricultural and Riparian Evapotranspiration Using MODIS Enhanced Vegetation Index and Ground Measurements of ET. II. Application to the Lower Colorado River, U.S. Remote Sens. 2009, 1, 1125–1138. [Google Scholar] [CrossRef] [Green Version]
- Knipper, K.; Hogue, T.; Scott, R.; Franz, K. Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region. Remote Sens. 2017, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P. A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems. J. Arid Environ. 2012, 82, 44–52. [Google Scholar] [CrossRef]
- Tillman, F.D.; Wiele, S.M.; Pool, D.R. A comparison of estimates of basin-scale soil-moisture evapotranspiration and estimates of riparian groundwater evapotranspiration with implications for water budgets in the Verde Valley, Central Arizona, USA. J. Arid Environ. 2016, 124, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Nagler, P.L.; Pearlstein, S.; Glenn, E.P.; Brown, T.B.; Bateman, H.L.; Bean, D.W.; Hultine, K.R. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations. Remote Sens. Environ. 2014, 140, 206–219. [Google Scholar] [CrossRef]
- Bateman, H.L.; Nagler, P.L.; Glenn, E.P. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA). J. Arid Environ. 2013, 89, 16–20. [Google Scholar] [CrossRef]
- Nouri, H.; Glenn, E.P.; Beecham, S.; Boroujeni, S.C.; Sutton, P.; Alaghmand, S.; Noori, B.; Nagler, P. Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods. Remote Sens. 2016, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Wang, L.; Yuan, G.; Sun, X.; Wang, S. Effects of Distinguishing Vegetation Types on the Estimates of Remotely Sensed Evapotranspiration in Arid Regions. Remote Sens. 2019, 11, 2856. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration. Crit. Rev. in Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; pp. 1–300. [Google Scholar]
- Brouwer, C.; Heibloem, M. Irrigation Water Management Training Manual No.3; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986; Available online: http://www.fao.org/tempref/agl/AGLW/fwm/Manual3.pdf (accessed on 30 April 2020).
- Chen, Y.N.; Pang, Z.H.; Chen, Y.P.; Li, W.H.; Xu, C.C.; Hao, X.M.; Huang, X.; Huang, T.M.; Ye, Z.X. Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeol. J. 2008, 16, 1371–1379. [Google Scholar] [CrossRef]
- Huang, T.M.; Pang, Z.H. Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: Evidence from environmental isotopes and water chemistry. J. Hydrol. 2010, 387, 188–201. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, G.; Yi, X.; Du, T. Quantifying the impacts of river hydrology on riparian vegetation spatial structure: Case study in the lower basin of the Tarim River, China. Ecohydrol. 2017, 10, e1887. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. and For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- USGS Global Visualization Viewer (GloVis). Available online: https://glovis.usgs.gov/ (accessed on 30 April 2020).
- Rouse Jr, J.W.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Nasa Special Publication: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China. Remote Sens. 2014, 6, 2024–2049. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Shang, R.; Liu, Y.; Lu, X. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sens. Environ. 2017, 189, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Noi, T.P.; Kappas, M.; Degener, J. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam. Remote Sens. 2016, 8, 1002. [Google Scholar] [CrossRef] [Green Version]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Gavilán, P.; Berengena, J.; Allen, R.G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agric. Water Manag. 2007, 89, 275–286. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, G.; Yi, X.; Du, T. Leaf area index inversion of riparian forest in the lower basin of Tarim River based on Landsat 8 OLI images. Arid Land Geogr. 2014, 37, 1248–1256. (In Chinese) [Google Scholar]
- Lian, J.; Huang, M. Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agric. Water Manag. 2016, 165, 153–162. [Google Scholar] [CrossRef]
- Majozi, N.; Mannaerts, C.; Ramoelo, A.; Mathieu, R.; Mudau, A.; Verhoef, W. An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa. Remote Sens. 2017, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Dugo, M.P.; Neale, C.M.U.; Mateos, L.; Kustas, W.P.; Prueger, J.H.; Anderson, M.C.; Li, F. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric. For. Meteorol. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Galleguillos, M.; Jacob, F.; Prévot, L.; French, A.; Lagacherie, P. Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data. Remote Sens. Environ. 2011, 115, 1326–1340. [Google Scholar] [CrossRef]
- Abiodun, O.O.; Guan, H.; Post, V.E.A.; Batelaan, O. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales. Hydrol. Earth Syst. Sci. 2018, 22, 2775–2794. [Google Scholar] [CrossRef] [Green Version]
- Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. and Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
- DehghaniSanij, H.; Yamamoto, T.; Rasiah, V. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agric. Water Manag. 2004, 64, 91–106. [Google Scholar] [CrossRef]
- Farzanpour, H.; Shiri, J.; Sadraddini, A.A.; Trajkovic, S. Global comparison of 20 reference evapotranspiration equations in a semi-arid region of Iran. Hydrol. Res. 2019, 50, 282–300. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Gocic, M.; Petković, D.; Shamshirband, S.; Kamsin, A. Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine. Comput. Electron. Agric. 2016, 127, 56–63. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Guan, H.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res. 2015, 51, 3145–3165. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Collischonn, W.; Aragao, L.; Rocha, H.R.; Malhi, Y.S. A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote Sens. 2012, 4, 703–725. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sammis, T.W.; Gutschick, V.P.; Gebremichael, M.; Miller, D.R. Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL). Trans. ASABE 2009, 52, 801–811. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, P.; Li, X.-Y.; Wang, L.; Wu, X.; Shi, F.; Bai, Y.; Li, E.; Wang, J.; Wang, Y. Seasonality of the Transpiration Fraction and Its Controls across Typical Ecosystems Within the Heihe River Basin. J. Geophys. Res. Atmos. 2019, 124, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G. Water use efficiency and evapotranspiration partitioning for three typical ecosystems in the Heihe River Basin, northwestern China. Agric. For. Meteorol. 2018, 253-254, 261–273. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G. Spatial evapotranspiration, rainfall and land use data in water accounting--Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Mexicano, L.; Garcia-Hernandez, J.; Nagler, P.L.; Gomez-Sapiens, M.M.; Tang, D.; Lomeli, M.A.; Ramirez-Hernandez, J.; Zamora-Arroyo, F. Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities. Ecol. Eng. 2013, 59, 176–184. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.; Sood, A.; Hoogeveen, J.; Peiser, L.; Bastidas-Obando, E.; Dost, R. Spatial evapotranspiration, rainfall and land use data in water accounting--Part 2: Reliability of water accounting results for policy decisions in the Awash Basin. Hydrol. Earth Syst. Sci. 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Guerrero, Y.; Glenn, E.P.; Hinojosa-Huerta, O. Water budget for agricultural and aquatic ecosystems in the delta of the Colorado River, Mexico: Implications for obtaining water for the environment. Ecol. Eng. 2013, 59, 41–51. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Kustas, W.P.; Houborg, R. Retrieving Leaf Area Index From Landsat Using MODIS LAI Products and Field Measurements. IEEE Geosci. Remote Sens. Lett. 2014, 11, 773–777. [Google Scholar] [CrossRef]
- Ganguly, S.; Nemani, R.R.; Zhang, G.; Hashimoto, H.; Milesi, C.; Michaelis, A.; Wang, W.; Votava, P.; Samanta, A.; Melton, F.; et al. Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration. Remote Sens. Environ. 2012, 122, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C. High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model. Comput. Electron. Agric. 2015, 115, 1–11. [Google Scholar] [CrossRef]
Categories | Models | Equations | References |
---|---|---|---|
Temperature-based models | Nagler-2005a | [12] | |
Nagler-2005b | [15] | ||
Scott-2008 | [16] | ||
Bunting-2014 | [17] | ||
ET0-based models | Nagler-2009 | [18] | |
Nagler-2013 | [19] | ||
Glenn-2015 | [20] | ||
Yuan-2016 | [21] |
Models | Tamarix Site | Populus Site | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | |
Nagler-2005a | 4.373 | 0.221 | 20.00 | −0.046 | 0.236 | 9.598 | 20.00 | 0.092 | ||||
Nagler-2005b | 17.802 | 0.221 | 7.554 | 36.111 | 4.994 | 0.224 | 1.203 | 9.598 | 6.063 | 35.983 | 5.922 | 0.197 |
Scott-2008 | 67.234 | 0.221 | 0.038 | 0.120 | −2.742 | 8.456 | 9.598 | 0.054 | 0.104 | −6.076 | ||
Bunting-2014 | 0.856 | 0.221 | 0.120 | 0.198 | 0.080 | 9.598 | 0.104 | 0.212 | ||||
Nagler-2009 | 2.354 | 2.999 | ||||||||||
Nagler-2013 | 16.774 | 0.221 | 0.306 | 2.309 | 9.598 | 1.334 | ||||||
Glenn-2015 | 4.941 | 1.086 | 0.335 | 3.675 | 0.594 | 0.245 | ||||||
Yuan-2016 | 0.543 | 1.512 |
Models | NSE | RMSE | MAE | MaxError | ||||
---|---|---|---|---|---|---|---|---|
Tamarix | Populus | Tamarix | Populus | Tamarix | Populus | Tamarix | Populus | |
Nagler-2005a | 0.826 | 0.421 | 0.611 | 0.730 | 0.529 | 0.562 | 1.034 | 1.574 |
Nagler-2005b | 0.805 | 0.525 | 0.647 | 0.662 | 0.480 | 0.508 | 1.040 | 1.496 |
Scott-2008 | 0.871 | 0.731 | 0.525 | 0.498 | 0.449 | 0.417 | 0.904 | 0.820 |
Bunting-2014 | 0.780 | 0.595 | 0.687 | 0.611 | 0.502 | 0.482 | 1.482 | 1.327 |
Nagler-2009 | 0.878 | 0.626 | 0.511 | 0.587 | 0.399 | 0.435 | 0.975 | 1.271 |
Nagler-2013 | 0.936 | 0.744 | 0.371 | 0.486 | 0.295 | 0.377 | 0.727 | 0.901 |
Glenn-2015 | 0.862 | 0.609 | 0.543 | 0.600 | 0.431 | 0.436 | 1.131 | 1.390 |
Yuan-2016 | 0.923 | 0.752 | 0.407 | 0.478 | 0.322 | 0.380 | 0.805 | 0.950 |
Models | NSE | RMSE | MAE | MaxError | ||||
---|---|---|---|---|---|---|---|---|
Tamarix | Populus | Tamarix | Populus | Tamarix | Populus | Tamarix | Populus | |
Nagler-2005a | 0.753 | 0.376 | 0.755 | 0.776 | 0.552 | 0.593 | 2.818 | 2.696 |
Nagler-2005b | 0.726 | 0.447 | 0.796 | 0.731 | 0.592 | 0.561 | 3.191 | 2.507 |
Scott-2008 | 0.792 | 0.480 | 0.692 | 0.709 | 0.504 | 0.551 | 2.608 | 2.449 |
Bunting-2014 | 0.661 | 0.408 | 0.885 | 0.756 | 0.644 | 0.582 | 3.346 | 2.669 |
Nagler-2009 | 0.770 | 0.543 | 0.728 | 0.665 | 0.576 | 0.514 | 2.622 | 2.035 |
Nagler-2013 | 0.845 | 0.576 | 0.599 | 0.640 | 0.453 | 0.504 | 2.228 | 1.900 |
Glenn-2015 | 0.765 | 0.573 | 0.737 | 0.642 | 0.569 | 0.499 | 2.764 | 1.881 |
Yuan-2016 | 0.829 | 0.576 | 0.628 | 0.640 | 0.481 | 0.508 | 2.351 | 1.754 |
Categories | Model Structures | Models |
---|---|---|
Temperature-based models | MS1: | Scott-2008 |
MS2: | Nagler-2005a; Nagler-2005b; Bunting-2014 | |
ET0-based models | MS3: | Nagler-2009; Nagler-2013; Yuan-2016 |
MS4: | Glenn-2015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.; Yuan, G.; Wang, L.; Sun, X.; Sun, R. Comparison of Remotely Sensed Evapotranspiration Models Over Two Typical Sites in an Arid Riparian Ecosystem of Northwestern China. Remote Sens. 2020, 12, 1434. https://doi.org/10.3390/rs12091434
Du T, Yuan G, Wang L, Sun X, Sun R. Comparison of Remotely Sensed Evapotranspiration Models Over Two Typical Sites in an Arid Riparian Ecosystem of Northwestern China. Remote Sensing. 2020; 12(9):1434. https://doi.org/10.3390/rs12091434
Chicago/Turabian StyleDu, Tao, Guofu Yuan, Li Wang, Xiaomin Sun, and Rui Sun. 2020. "Comparison of Remotely Sensed Evapotranspiration Models Over Two Typical Sites in an Arid Riparian Ecosystem of Northwestern China" Remote Sensing 12, no. 9: 1434. https://doi.org/10.3390/rs12091434