Wideband Waveform Generation Using MDDS and Phase Compensation for X-Band SAR
"> Figure 1
<p>Block diagram of a digital chirp waveform generator. (<b>a</b>) Memory-map-based chirp waveform generator; (<b>b</b>) direct digital synthesizer (DDS)-based chirp waveform generator.</p> "> Figure 2
<p>Block diagram for multi-DDS (MDDS). Each output is merged into a multiplexer (MUX).</p> "> Figure 3
<p>Phase error compensation block (compensation phase error, CPE).</p> "> Figure 4
<p>Pre-distortion process.</p> "> Figure 5
<p>Proposed hardware architecture. The waveform generator consisted of one field programmable gate array (FPGA), two digital analog convertors (DACs), a filter, etc. Xilinx ISE was used to code very-high-speed-integrated-circuits hardware description language (VHDL), and the program was uploaded to the FPGA using joint test action group (JTAG). A radio frequency (RF) modulator converted to intermediate frequency (IF). We used an additional local oscillator (LO) to up-convert the X-band.</p> "> Figure 6
<p>Developed MDDS waveform generator.</p> "> Figure 7
<p>Simulation results with phase error using conventional MDDS. (<b>a</b>) MDDS output signal; (<b>b</b>) phase value over time.</p> "> Figure 8
<p>Simulation results of MDDS with phase error compensation. (<b>a</b>) MDDS output signal; (<b>b</b>) phase value over time.</p> "> Figure 9
<p>Simulation results of MDDS with pre-distortion. (<b>a</b>) MDDS output signal; (<b>b</b>) phase value over time.</p> "> Figure 10
<p>Waveform generator output applying MDDS (<b>a</b>) before phase error compensation, (<b>b</b>) with phase error compensation, and (<b>c</b>) with pre-distortion.</p> "> Figure 11
<p>The X-band (9.75 GHz) frequency spectrum (<b>a</b>) before phase error compensation, (<b>b</b>) with phase error compensation, and (<b>c</b>) with pre-distortion.</p> "> Figure 12
<p>Detailed measurement for phase error analysis. (<b>a</b>) Phase compensation waveform; (<b>b</b>) pre-distortion waveform in <a href="#remotesensing-12-01431-f013" class="html-fig">Figure 13</a>f. Top left is the frequency spectrum at the X-band (9.75 GHz), middle left is the detailed pulse table, and bottom left illustrates acquisition time (pulse repetition interval was 576 µs). Upper right illustrates the frequency measurement over time from 9.5 to 10 GHz (bandwidth of 500 MHz), and lower right illustrates the phase error varying time (pulse width of 12 µs).</p> "> Figure 13
<p>Results of pre-distortion for each section.</p> ">
Abstract
:1. Introduction
- Proposal for an improved MDDS method: We propose an improved MDDS method for wideband waveform generation to satisfy the desired clock cost and reduce the phase error.
- Development and verification of the waveform generator for wideband: For a high-speed and low-cost system, we propose a hardware structure in accordance with the improved MDDS method. The developed waveform generator was measured to verify the wideband generation method and decrement of phase error varying time.
2. Materials and Methods
2.1. Study Area
2.1.1. Chirp Pulse Waveform
2.1.2. Memory-Map-Based Waveform Generator
2.1.3. DDS-Based Waveform Generator
2.2. Proposed Improved MDDS Method
2.2.1. Improved MDDS
2.2.2. Proposed Phase Error Compensation and Pre-Distortion
2.3. MDDS Waveform Generator
2.3.1. Design of the MDDS Waveform Generator
2.3.2. Development of the MDDS Waveform Generator
3. Results
3.1. Simulation Results
3.2. Hardware Output
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shao, W.; Zhang, Z.; Li, X.; Li, H. Ocean wave parameters retrieval from Sentinel-1 SAR imagery. Remote Sens. 2016, 8, 707. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Cartus, O. Research Pathways of Forest Above-Ground Biomass Estimation Based on SAR Backscatter and Interferometric SAR Observations. Remote Sens. 2018, 10, 608. [Google Scholar] [CrossRef] [Green Version]
- El Moussawi, I.; Ho Tong Minh, D.; Baghdadi, N.; Abdallah, C.; Jomaah, J.; Strauss, O.; Lavalle, M.; Ngo, Y.-N. Monitoring Tropical Forest Structure Using SAR Tomography at L- and P-Band. Remote Sens. 2019, 11, 1934. [Google Scholar] [CrossRef] [Green Version]
- Dechesne, C.; Lefèvre, S.; Vadaine, R.; Hajduch, G.; Fablet, R. Ship Identification and Characterization in Sentinel-1 SAR Images with Multi-Task Deep Learning. Remote Sens. 2019, 11, 2997. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Chowdhury, M.A.H.; Bhuyan, M.A.I.; Bhuyan, N.H.M.; Matin, A. Development of a polarimetric & interferometric GB-SAR and perform measurement for a fixed target. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 285–289. [Google Scholar]
- Lee, Y.C.; Koo, V.C.; Chan, Y.K. Design and development of FPGA-based FFT co-processor for synthetic aperture radar (SAR). In Proceedings of the 2017 Progress in Electromagnetics Research Symposium–Fall (PIERS–FALL), Singapore, 19–22 November 2017; pp. 1760–1766. [Google Scholar]
- Zhang, X.; Shao, Z.; Ren, J.; Li, Y.; Jiang, J. Development and preliminary results of small-size UAV-borne FMCW SAR. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 7825–7828. [Google Scholar]
- Chua, M.Y.; Sumantyo, J.T.S.; Santosa, C.E.; Panggabean, G.F.; Ji, Y.Q.; Parulian, S.P.; Nasucha, M. An PC-based airborne SAR baseband system. In Proceedings of the 2018 Progress In Electromagnetics Research Symposium (PIERS–Toyama), Toyama, Japan, 1–4 August 2018; pp. 882–888. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Wang, C.; Xu, J.; Liao, G.; Xu, X.; Zhang, Y. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 336–346. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Deng, Y.; Wang, P.; Li, N.; Yu, W.; Wang, W. Precise calibration of channel imbalance for very high resolution SAR with stepped frequency. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4252–4261. [Google Scholar] [CrossRef]
- Vu, V.T.; Pettersson, M.I. Derivation of bistatic SAR resolution equations based on backprojection. IEEE Geosci. Remote Sens. Lett. 2018, 15, 694–698. [Google Scholar] [CrossRef]
- Jin, G.; Deng, Y.; Wang, R.; Wang, W.; Wang, P.; Long, Y.; Zhang, Z.; Zhang, Y. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6155–6168. [Google Scholar] [CrossRef]
- Jin, G.; Liu, K.; Deng, Y.; Sha, Y.; Wang, R.; Liu, D.; Wang, W.; Long, Y.; Zhang, Y. Nonlinear Frequency Modulation Signal Generator in LT-1. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1570–1574. [Google Scholar] [CrossRef]
- Jun, G.; Deng, Y.; Wang, R.; Wang, W.; Zhang, Y.; Long, Y.; Liang, D. Mitigating Range Ambiguities With Advanced Nonlinear Frequency Modulation Waveform. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1230–1234. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Chua, M.Y.; Koo, V.C. FPGA-based chirp generator for high resolution UAV SAR. Prog. Electromagn. Res. 2009, 99, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Tomiyasu, K. Tutorial review of synthetic-aperture radar (sar) with applications to imaging of the ocean surface. Proc. IEEE 1978, 66, 563–583. [Google Scholar] [CrossRef]
- Mostajeran, A.; Naghavi, S.M.H.; Emadi, M.; Samala, S.; Ginsburg, B.P.; Asseri, M.; Afshari, E. A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system. IEEE Trans. Microw. Theory Technol. 2013, 67, 429–442. [Google Scholar] [CrossRef]
- Xia, J.; Ng, E.; Boumaiza, S. Wideband Compensation of RF vector multiplier for RF predistortion systems. IEEE Trans. Circuits Syst. II Exp. Briefs 2016, 63, 1084–1088. [Google Scholar] [CrossRef]
- Dunn, Z.; Yeary, M.; Fulton, C.; Goodman, N. Wideband digital predistortion of solid-state radar amplifiers. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2452–2466. [Google Scholar] [CrossRef]
- An, J.H.; Jung, H.W.; Yang, H.I.; Ryu, S.B.; Lee, H.C.; Lee, S.G.; Yong, S.S.; Kim, J.H. Development of chirp signal generator for micro satellite on-board synthetic aperture radar. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3663–3666. [Google Scholar]
- Dunn, Z.; Yeary, M.; Fulton, C. Frequency-dependent power amplifier modeling and correction for distortion in wideband radar transmissions. In Proceedings of the 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 3–6 August 2014; pp. 61–64. [Google Scholar]
- Aliparast, P. Design and implementation of a high efficiency RF power amplifier for S-band telemetry subsystems. Int. J. Electron. Commun. 2016, 70, 1311–1320. [Google Scholar] [CrossRef]
- Tripathi, G.C.; Rawat, M. RFin–RFout Linearizer System Design for Satellite Communication. IEEE Trans. Electron. Devices 2018, 65, 2378–2384. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Liu, X. Adaptive reconstruction for azimuth signal of multichannel HRWS SAR imaging system. EURASIP J. Adv. Signal Process. 2018, 2018, 1–19. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Li, Y.; Duan, H.; Song, X. A new azimuth ambiguity suppression algorithm for surface current measurement in coastal waters and rivers with along-track InSAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3148–3165. [Google Scholar] [CrossRef]
- Kim, K.R.; Kim, J.H. Experiment and Analysis of L-band SAR for target range detection. In Proceedings of the Symposium of the Korean institute of communications and information sciences, Gangwon-do, Korea, 17–19 January 2018; pp. 1270–1271. [Google Scholar]
- Kim, K.R.; Ryu, S.B.; Lee, H.C.; Lee, S.G.; Kim, J.H. Development and experiment of L-band SAR for ranging and imaging target. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7821–7824. [Google Scholar]
Range | Minimum (degree) | Maximum (degree) | Mean (degree) | Variation (degree) | Standard Deviation (degree) | |
---|---|---|---|---|---|---|
(a) | No PD | −13.58 | 13.73 | −1.80 | 29.79 | 5.45 |
(b) | 0–6 | −16.85 | 9.28 | −3.66 | 19.17 | 4.37 |
(c) | 0–6 + 7–8 | −14.18 | 12.36 | −1.66 | 15.47 | 3.93 |
(d) | 7–8 | −16.75 | 12.35 | −3.09 | 22.20 | 4.71 |
(e) | 7–9 | −11.61 | 14.00 | 1.75 | 14.79 | 3.84 |
(f) | 0–6 + 7–9 | −14.98 | 8.01 | −3.12 | 10.13 | 3.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-R.; Kim, J.-H. Wideband Waveform Generation Using MDDS and Phase Compensation for X-Band SAR. Remote Sens. 2020, 12, 1431. https://doi.org/10.3390/rs12091431
Kim K-R, Kim J-H. Wideband Waveform Generation Using MDDS and Phase Compensation for X-Band SAR. Remote Sensing. 2020; 12(9):1431. https://doi.org/10.3390/rs12091431
Chicago/Turabian StyleKim, Kyeong-Rok, and Jae-Hyun Kim. 2020. "Wideband Waveform Generation Using MDDS and Phase Compensation for X-Band SAR" Remote Sensing 12, no. 9: 1431. https://doi.org/10.3390/rs12091431