Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data
"> Figure 1
<p>(<b>a</b>) Google map of southern Italy, with the red circle showing the position of Stromboli volcano, at the NE end of the Aeolian Archipelago. (<b>b</b>) Stromboli island with the position and labels of the monitoring instruments used in this study. The blue triangles are the monitoring cameras; the red circles are the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) stations; the yellow squares are the seismic stations. The empty red circle outlines the position of the summit craters displayed in c. SdF = Sciara del Fuoco slope. (<b>c</b>) View from South of Stromboli summit craters, taken on 21 February 2020, showing the names of the active crater areas. NEC = NE Crater zone; CC = Central Crater zone; SWC = SW Crater zone. The field of view is about 300 m wide. Photo courtesy of F. Ciancitto, INGV.</p> "> Figure 2
<p>Examples of seismograms and spectrograms of seismic signals recorded at Stromboli in the studied period. Recording start times are reported at the bottom of each plot. The duration of the plots is one minute. (<b>a</b>) seismic signal and spectrogram produced by strombolian explosion; (<b>b</b>) seismic signal and spectrogram produced by volcanic tremor; (<b>c</b>) seismicity and spectrogram resulting from loose landslides; (<b>d</b>) seismic signal and spectrogram generated by blocks rolling down the Sciara del Fuoco slope; (<b>e</b>) seismic signal and spectrogram caused by pyroclastic density currents; (<b>f</b>) seismic trace and spectrogram recorded during the emplacement of lava flows.</p> "> Figure 3
<p>Comparative graphs of monitoring data collected between 28 March and 1 April 2020, with the two red rectangles displaying the duration of the two overflows from the NE crater rim occurred on 28 and 30–31 March. (<b>a</b>) Number of explosions per h detected from the thermal monitoring cameras SCT (red line) and SPCT (blue line) between 28 March and 1 April 2020. The parts with no data are caused by poor weather conditions with clouds obscuring the summit area; (<b>b</b>) Real Time Seismic Amplitude Monitoring (RSAM) of the STRE station (<a href="#remotesensing-12-03010-f001" class="html-fig">Figure 1</a>) seismic signal (East–West component) filtered at a frequency > 10 Hz, calculated on 15-s windows); (<b>c</b>) GBInSAR NE190 cumulative displacement (positive values refer to the increasing distance between the sensor and the target area, representing the deflation of the summit area; (<b>d</b>) Standardized NEC area measured using GBInSAR NE400 power images (one image every four h; xn = xu μ/σ; where xn is the standardized data, xu is the original data, μ is the mean and σ is the standard deviation of the time series); and, (<b>e</b>) Radiant heat flux estimated by HOTSAT using Moderate Resolution Imaging Spectroradiometer (MODIS) (blue dots), Sea and Land Surface Temperature Radiometer (SLSTR) (red dots), and Visible Infrared Imaging Radiometer Suite (VIIRS) (green dots) data from 28 March to 1 April 2020.</p> "> Figure 4
<p>(<b>a</b>) 28 February 2020−27 March 2020, representing the pre-effusive period. Measured displacement was restricted to the NEC area and related to the accumulation and gravitational instability of the newly emplaced volcanic material; and, (<b>b</b>) 31 March 2020 cumulative displacement, highlighting the syn-eruptive deflation that occurred between 00:35 and 05:09.</p> "> Figure 5
<p>Minimum, mean, and maximum estimates for Time-Averaged Discharge Rate (TADR) and volume estimated during the effusive phase occurred from 30 March to 1 April 2020.</p> "> Figure 6
<p>Google Earth view of the satellite-derived lava overflows from the NE crater rim spreading along the Sciara del Fuoco. The lava flow field (red contour) has been superimposed from the Pléiades image acquired on 7 April 2020.</p> "> Figure 7
<p>Three-dimensional (3D) mapping of the deposit in the area obtained using the ML classifier emplaced between 8 October 2019 and 7 April 2020.</p> "> Figure 8
<p>Comparison of a PDC seismic signal, starting at 03:43:54, 31 March 2020 (labeled “I”) with the thermal camera images. (<b>a</b>) Impact of the PDC on the coast line recorded by the SPCT camera (see <a href="#remotesensing-12-03010-f001" class="html-fig">Figure 1</a> for camera location). (<b>b</b>) Seismogram and spectrogram of the PDC signal that occurred on 31 March at 03:43:54. The magenta arrows, labeled “I”, indicate the onset of the landslide-type seismic signal. The red arrows, labeled “II”, indicate the beginning of the 1–3 Hz frequency signal generated by the impact of the PDC on the coast line at 03:44:23 UTC. (<b>c</b>) 10 min of seismic signal highpass-filtered in frequencies >10 Hz (red) and bandpass-filtered in the 1–3 Hz band (blue) containing the recordings of some of the major PDCs that occurred on 31 March 2020. The amplitude of the highpass-filtered signal (red) is multiplied × 20. The yellow box highlights the PDCs represented in panels (<b>a</b>) and (<b>b</b>).</p> "> Figure 9
<p>Comparison of one-h (2020-03-31T03: 00:00–2020-03-31T04: 00:00 UTC) of the vertical component seismic signals of the STRE (black line) and STR1 (red line) stations. The E and PDC labels followed by an integer represent the signals of the most significant explosions and PDCs respectively, recorded in the considered time interval. At the top of the figure, the seismograms of the PDC4 and E3 explosion are shown in detail.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. The INGV Cameras Monitoring Network
2.2. GBInSAR
2.3. Satellite Remote Sensing Monitoring
2.4. The INGV Seismic Network
3. Results
3.1. Eruptive Activity between 28 March and 1 April 2020
3.2. GBInSAR Data
3.3. Satellite-Derived Lava Flow Field Retrievals
3.4. Seismicity
4. Discussion
5. Conclusions
- -
- before the analyzed phase, the explosive activity at the summit vents was reasonably intense (20–25 explosions/h), with a prevalence of explosions that produced coarse material in the NEC (i.e., shallow magma level in the conduit);
- -
- the 28 March 2020 overflow was anticipated by some landslides that involved the material accumulated in the areas around the NEC (total eroded volume ~5–6 × 103 m3), even if these did not generate a substantial widening of the crater itself;
- -
- the first overflow was accompanied by a decrease of the total number of explosions/h (from the previous 20–25 to 5–15 explosions/h);
- -
- PDCs were also generated by the crumbling of the overflow front, they reached the sea and formed an apron on the coast;
- -
- no ground deformation was recorded before nor after the 28 March event, meaning that the lava flow volume was small;
- -
- after the first overflow, the number of landslides detected with the seismic network decreased, while the number of explosions increased again, suggesting a new upward movement of the magma level within the conduit;
- -
- the onset of the new overflow phase occurred on 30 March together with a new sharp reduction in the number of explosions, a new increase in the number of landslides, which produced a significant variation in the morphology of the crater and which were associated with the accumulation of incandescent material along the coast line;
- -
- the PDCs linked to the initial phase originated from the NEC area (total eroded volume ~7.3 × 103 m3), whereas, as the effusive phase progressed, the subsequent PDCs were generated directly by crumbling of lava flow front along the steep slope of the SdF;
- -
- PDCs reached the sea with variable speed (between 12.9 and 40.3 ms−1), partly flowing on the water;
- -
- the entry into the sea of these mass-flows is associated with a strong variation in seismic signals, with the disappearance of the typical signal associated with the landslides in Stromboli (high frequency; 4–15 Hz) and the appearance of another one characterized by a large amplitude and lower frequency (1–3 Hz);
- -
- this change in the seismic signal could be due to the PDC entrance in the underwater environment, as well as to the resonance of the Stromboli conduit, which is located in the volcano edifice, at a small depth below the SdF;
- -
- the lava overflows that were emplaced between 28 March and 1 April covered a total area of 94,500 ± 3380 m2;
- -
- the volume of the deposits accumulated from October 2019 to April 2020 near the NE crater amounts to 34,600 ± 9700 m3, whereas the volume in the overflows area was of 144,400 ± 79,000 m3, for a total amount of 179,000 ± 89,000 m3. Thermal satellite data also allowed for constraining the DRE lava volume between 37 and 69 × 103 m3 emplaced from 30 March to 1 April 2020; integrating this result with those that were obtained from DEM difference, a lava volume of ~80.5 × 103 m3 could have been emitted during 28 March–1 April.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calvari, S.; Pinkerton, H. Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J. Volcanol. Geotherm. Res. 2004, 132, 225–239. [Google Scholar] [CrossRef]
- Behncke, B.; Neri, M.; Pecora, E.; Zanon, V. The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001. Bull. Volcanol. 2006, 69, 149–173. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Herault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. Geol. Soc. Am. Bull. 2019. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Geol. Soc. Am. Bull. 2016, 128, 752–763. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Chevrel, M.O.; Coppola, D.; Ramsey, M.S.; Hrysiewicz, A.; Thivet, S.; Villeneuve, N.; Favalli, M.; Peltier, A.; Kowalski, P.; et al. Validation of an integrated satellite-data-driven response to an effusive crisis: The April-May 2018 eruption of Piton de la Fournaise. Ann. Geophys. 2019, 62, VO230. [Google Scholar] [CrossRef]
- Neal, C.A.; Brantley, S.R.; Antolik, L.; Babb, J.L.; Burgess, M.; Calles, K.; Cappos, M.; Chang, J.C.; Conway, S.; Desmither, L.; et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 2019, 363, 367–374. [Google Scholar] [CrossRef]
- Acocella, V. Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth-Sci. Rev. 2007, 85, 125–160. [Google Scholar] [CrossRef]
- Michon, L.; Villeneuve, N.; Catry, T.; Merle, O. How summit calderas collapse on basaltic volcanoes: New insights from the April 2007 caldera collapse of Piton de la Fournaise volcano. J. Volcanol. Geotherm Res. 2009, 184, 138–151. [Google Scholar] [CrossRef] [Green Version]
- Tepp, G.; Hotovec-Ellis, A.; Shiro, B.; Johanson, I.; Thelen, W.; Haney, M.M. Seismic and geodetic progression of the 2018 summit caldera collapse of Kilauea volcano. Earth Plan. Sci. Lett. 2020, 540, 116250. [Google Scholar] [CrossRef]
- Calvari, S.; Pinkerton, H. Instabilities in the summit region of Mount Etna during the 1999 eruption. Bull. Volcanol. 2002, 63, 526–535. [Google Scholar] [CrossRef]
- Behncke, B.; Neri, M.; Carniel, R. An exceptional case of endogenous lava dome growth spawning pyroclastic avalanches: The 1999 Bocca Nuova eruption of Mt. Etna (Italy). J. Volcanol. Geotherm. Res. 2003, 124, 115–128. [Google Scholar] [CrossRef]
- Behncke, B.; Calvari, S.; Giammanco, S.; Neri, M.; Pinkerton, H. Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rock: An example from the 2006 summit eruptions of Mount Etna, Italy. Bull. Volcanol. 2008, 70, 1249–1268. [Google Scholar] [CrossRef]
- Cole, P.D.; Fernandez, E.; Duarte, E.; Duncan, A.M. Explosive activity and generation mechanisms of pyroclastic flows at Arenal volcano, Costa Rica between 1987 and 2001. Bull. Volcanol. 2005, 67, 695–716. [Google Scholar] [CrossRef]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli. Bull. Volcanol. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Peterson, D.W. The 1980 Eruptions of Mount St. Helens, Washington. Chronology of the 1980 Eruptive Activity; US Geological Survey: Reston, VA, USA, 1981; Volume 1250, pp. 17–30.
- Bonaccorso, A.; Calvari, S.; Garfì, G.; Lodato, L.; Patané, D. December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 2003, 30, 1941–1944. [Google Scholar] [CrossRef]
- Tinti, S.; Manucci, A.; Pagnoni, G.; Armigliato, A.; Zaniboni, F. The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Nat. Hazards Earth Syst. Sci. 2005, 5, 763–775. [Google Scholar] [CrossRef]
- Walter, T.R.; Haghshenas Haghighi, M.; Schneider, F.M. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 2019, 10, 4339. [Google Scholar] [CrossRef]
- Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.L.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002-2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Res.-Solid Earth 2005, 110, B02201. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Lanzafame, G. Structural features of the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 2009, 182, 137–144. [Google Scholar] [CrossRef]
- Tioukov, V.; Alexandrov, A.; Bozza, C.; Consiglio, L.; D’Ambrosio, N.; De Lellis, G.; De Sio, C.; Giudicepietro, F.; Macedonio, G.; Miyamoto, S.; et al. First muography of Stromboli volcano. Sci. Rep. 2019, 9, 6695. [Google Scholar] [CrossRef]
- Rittmann, A. Der ausbruch des Stromboli am 11 September 1930. Zeitschrift für vulkanologie 1931, 14, 47–77. [Google Scholar]
- Di Roberto, A.; Bertagnini, A.; Pompilio, M.; Bisson, M. Pyroclastic density currents at Stromboli volcano (Aeolian Islands, Italy): A case study of the 1930 eruption. Bull. Volcanol. 2014, 76, 827. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Lopez, C.; Macedonio, G.; Alparone, S.; Bianco, F.; Calvari, S.; De Cesare, W.; Delle Donne, D.; Di Lieto, B.; Esposito, A.M.; et al. Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 2020, 11, 1813. [Google Scholar] [CrossRef]
- Salvatici, T.; Di Roberto, A.; Di Traglia, F.; Bisson, M.; Morelli, S.; Fidolini, F.; Bertagnini, A.; Pompilio, M.; Hungr, O.; Casagli, N. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli Volcano (Italy). Geomorphology 2016, 273, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Takarada, S.; Suto, S. Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull. Volcanol. 1993, 55, 166–175. [Google Scholar] [CrossRef]
- Baxter, P.; Jenkins, S.; Seswandhana, R.; Komorowski, J.-C.; Dunn, K.; Purser, D.; Voight, B.; Shelley, I. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management. Burns 2017, 43, 1051–1069. [Google Scholar] [CrossRef]
- Auker, M.R.; Sparks, R.S.J.; Siebert, L.; Crosweller, H.S.; Ewert, J. A statistical analysis of the global historical volcanic fatalities record. J. Appl. Volcanol. 2013, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Chouet, B.; Hamisevicz, N.; McGetchin, T.R. Photoballistics of volcanic jet activity at Stromboli, Italy. J. Geophys. Res.-Solid Earth 1974, 79, 4961–4976. [Google Scholar] [CrossRef]
- Ripepe, M.; Rossi, M.; Saccorotti, G. Image processing of explosive activity at Stromboli. J. Volcanol. Geotherm. Res. 1993, 54, 335–351. [Google Scholar] [CrossRef]
- Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull. Volcanol. 2007, 69, 769–784. [Google Scholar] [CrossRef]
- Calvari, S.; Bonaccorso, A.; Madonia, P.; Neri, M.; Liuzzo, M.; Salerno, G.G.; Behncke, B.; Caltabiano, T.; Cristaldi, A.; Giuffrida, G.; et al. Major eruptive style changes induced by structural modifications of a shallow conduit system: The 2007-2012 Stromboli case. Bull. Volcanol. 2014, 76, 841. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 effusive eruption at Stromboli: New insights from in-situ and remote sensing measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 Lava Flows at the Sciara del Fuoco, Stromboli–Analysis from Multi-Sensor Infrared Satellite Imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Di Traglia, F.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; De Rosa, G.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018, 300, 95–112. [Google Scholar] [CrossRef]
- Lodato, L.; Spampinato, L.; Harris, A.J.L.; Calvari, S.; Dehn, J.; Patrick, M. The Morphology and Evolution of the Stromboli 2002-03 Lava Flow Field: An Example of Basaltic Flow Field Emplaced on a Steep Slope. Bull. Volcanol. 2007, 69, 661–679. [Google Scholar] [CrossRef]
- Martini, M.; Giudicepietro, F.; D’Auria, L.; Esposito, A.M.; Caputo, T.; Curciotti, R.; De Cesare, W.; Orazi, M.; Scarpato, G.; Caputo, A.; et al. Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano. Ann. Geophys. 2007, 50, 775–788. [Google Scholar] [CrossRef]
- Pioli, L.; Rosi, M.; Calvari, S.; Spampinato, L.; Renzulli, A.; Di Roberto, A. The eruptive activity of 28 and 29 December 2002. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; American Geophysical Union Monograph Series; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 182, pp. 105–116. ISBN 978-0-87590-447-0. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli flank eruption: Chronology of the events, and effusion rate measurements from thermal images and satellite data. J. Geophys. Res.-Solid Earth 2010, 115, B04201. [Google Scholar] [CrossRef] [Green Version]
- Di Traglia, F.; Battaglia, M.; Nolesini, T.; Lagomarsino, D.; Casagli, N. Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data. Sci. Rep. 2015, 5, 13569. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.L.; Federico, C.; Inguaggiato, S.; Sollami, A.; Tantillo, M.; Vita, F.; Bellomo, S.; Longo, M.; Grassa, F.; Liuzzo, M. The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil CO2 flux and 3He/4He ratio in thermal waters. Geophys. Res. Lett. 2015, 42, 2235–2243. [Google Scholar] [CrossRef]
- Pistolesi, M.; Delle Donne, D.; Pioli, L.; Rosi, M.; Ripepe, M. The 15 March 2007 explosive crisis at Stromboli volcano, Italy: Assessing physical parameters through a multidisciplinary approach. J. Geophys. Res.-Solid Earth 2011, 116, B12206. [Google Scholar] [CrossRef]
- Davies, D.K.; Quearry, M.W.; Bonis, S.B. Glowing avalanches from the 1974 eruption of the volcano Fuego, Guatemala. Geol. Soc. Am. Bull. 1978, 89, 369–384. [Google Scholar] [CrossRef]
- Di Traglia, F.; Intrieri, E.; Nolesini, T.; Bardi, F.; Del Ventisette, C.; Ferrigno, F.; Frangioni, S.; Frodella, W.; Gigli, G.; Lotti, A.; et al. The Ground-Based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity. Bull. Volcanol. 2014, 76, 1–18. [Google Scholar] [CrossRef]
- Barberi, F.; Rosi, M.; Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 1993, 3, 173–187. [Google Scholar]
- Bertagnini, A.; Landi, P. The Secche di Lazzaro pyroclastics of Stromboli volcano: A phreatomagmatic eruption related to the Sciara del Fuoco sector collapse. Bull. Volcanol. 1996, 58, 239–245. [Google Scholar] [CrossRef]
- Giordano, G.; Porreca, M.; Musacchio, P.; Mattei, M. The Holocene Secche di Lazzaro phreatomagmatic succession (Stromboli, Italy): Evidence of pyroclastic density current origin deduced by facies analysis and AMS flow directions. Bull. Volcanol. 2008, 70, 1221–1236. [Google Scholar] [CrossRef]
- Lucchi, F.; Francalanci, L.; De Astis, G.; Tranne, C.A.; Braschi, E.; Klaver, M. Geological evidence for recurrent collapse-driven phreatomagmatic pyroclastic density currents in the Holocene activity of Stromboli volcano, Italy. J. Volcanol. Geotherm. Res. 2019, 385, 81–102. [Google Scholar] [CrossRef]
- Burton, M.R.; Calvari, S.; Spampinato, L.; Lodato, L.; Pino, N.A.; Marchetti, E.; Murè, F. Volcanic and seismic activity at Stromboli preceding the 2002–2003 eruption. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano: An integrated study of the 2002–2003 eruption. AGU Geophys. Monogr. Ser. 2008, 182, 93–104. [Google Scholar] [CrossRef]
- Ripepe, M.; Delle Donne, D.; Lacanna, G.; Marchetti, E.; Ulivieri, G. The onset of the 2007 Stromboli effusive eruption recorded by an integrated geophysical network. J. Volcanol. Geotherm. Res. 2009, 182, 131–136. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Antonello, G.; Casagli, N.; Farina, P.; Leva, D.; Nico, G.; Sieber, A.J.; Tarchi, D. Ground-based SAR interferometry for monitoring mass movements. Landslides 2004, 1, 21–28. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Intrieri, E.; Mugnai, F.; Leva, D.; Rosi, M.; Casagli, N. Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: A tool to mitigate volcano flank dynamics and intense volcanic activ-ity. Earth-Sci. Rev. 2014, 139, 317–335. [Google Scholar] [CrossRef] [Green Version]
- Casagli, N.; Tibaldi, A.; Merri, A.; Del Ventisette, C.; Apuani, T.; Guerri, L.; Fortuny-Guasch, J.; Tarchi, D. Deformation of Stromboli volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data. J. Volcanol. Geotherm. Res. 2009, 182, 182–200. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Di Traglia, F.; Chaussard, E.; Lu, Z.; Nolesini, T.; Casagli, N. Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth-Sci. Rev. 2019, 192, 236–257. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Solari, L.; Ciampalini, A.; Frodella, W.; Steri, D.; Allotta, B.; Rindi, A.; Marini, L.; Monni, N.; et al. Lava delta deformation as a proxy for submarine slope instability. Earth Plan. Sci. Lett. 2018, 488, 46–58. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; Del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomat. Nat. Hazards Risk 2011, 2, 279–290. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on a combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 5. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. HOTSAT: A multiplatform system for the satellite thermal monitoring of volcanic activity. Geol. Soc. Lond. Spec. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Calvari, S.; Pérez, N.M.; Hernández, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C. Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verde. J. Geophys. Res.-Solid Earth 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. Mapping volcanic deposits of the 2011–2015 Etna eruptive events using satellite remote sensing. Front. Earth Sci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Spampinato, L.; Oppenheimer, C.; Cannata, A.; Montalto, P.; Salerno, G.G.; Calvari, S. On the time-scale of thermal cycles associated with open-vent degassing. Bull. Volcanol. 2012, 74, 1281–1292. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ganci, G.; Maturilli, A.; Rymer, H.; Blake, S.; Ferrucci, F. Spaceborne EO and a Combination of Inverse and Forward Modelling for Monitoring Lava Flow Advance. Remote Sens. 2019, 11, 3032. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Blake, S.; Rothery, D.; Stevens, N. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high-resolution radiometer data: Implications for real-time thermal volcano monitoring. J. Geophys. Res. 1997, 102, 7985–8003. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Herault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Ganci, G.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption. Ann. Geophys. 2019, 61. [Google Scholar] [CrossRef]
- Calvari, S.; Cannavò, F.; Bonaccorso, A.; Spampinato, L.; Pellegrino, A.G. Paroxysmal Explosions, Lava Fountains and Ash Plumes at Etna Volcano: Eruptive Processes and Hazard Implications. Front. Earth Sci. 2018, 6, 107. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Cappello, A.; Zago, V.; Bilotta, G.; Hérault, A.; Del Negro, C. 3D Lava flow mapping of the 17–25 May 2016 Etna eruption using tristereo optical satellite data. Ann. Geophys. 2019, 62, VO220. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Corradino, C.; Del Negro, C. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data 2019, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Di Traglia, F.; Fornaciai, A.; Favalli, M.; Nolesini, T.; Casagli, N. Catching Geomorphological Response to Volcanic Activity on Steep Slope Volcanoes Using Multi-Platform Remote Sensing. Remote Sens. 2020, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- De Cesare, W.; Orazi, M.; Peluso, R.; Scarpato, G.; Caputo, A.; D’Auria, L.; Giudicepietro, F.; Martini, M.; Buonocunto, C.; Capello, M.; et al. The broadband seismic network of Stromboli volcano, Italy. Seism. Res. Lett. 2009, 80, 435–439. [Google Scholar] [CrossRef]
- Chouet, B.; Dawson, P.; Ohminato, T.; Martini, M.; Saccorotti, G.; Giudicepietro, F.; De Luca, G.; Milana, G.; Scarpa, R. Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversions of very- long-period data. J. Geophys. Res.-Solid Earth 2003, 108, 2019. [Google Scholar] [CrossRef]
- D’Auria, L.; Giudicepietro, F.; Martini, M.; Peluso, R. Seismological insight into the kinematics of the 5 April 2003 vulcanian explosion at Stromboli volcano (southern Italy). Geophys. Res. Lett. 2006, 33, 8. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; D’Auria, L.; Scarpetta, S.; Martini, M.G.; Coltelli, M.; Marinaro, M. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps. Bull. Seism. Soc. Am. 2008, 98, 2449–2459. [Google Scholar] [CrossRef]
- Giudicepietro, F.; D’Auria, L.; Martini, M.; Caputo, T.; Peluso, R.; De Cesare, W.; Scarpato, G. Changes in the VLP seismic source during the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 2009, 182, 162–171. [Google Scholar] [CrossRef]
- Calvari, S.; Büttner, R.; Cristaldi, A.; Dellino, P.; Giudicepietro, F.; Orazi, M.; Peluso, R.; Spampinato, L.; Zimanowski, B.; Boschi, E. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multi-parametric characterisation of the event and quantification of the ejecta. J. Geophys. Res.-Solid Earth 2012, 117, B05201. [Google Scholar] [CrossRef]
- Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R. Source and path effects in the wavefields of tremor and explosions at Stromboli Volcano, Italy. J. Geophys. Res. 1997, 102, 15129–15150. [Google Scholar] [CrossRef]
- Esposito, A.M.; Giudicepietro, F.; Scarpetta, S.; D’Auria, L.; Marinaro, M.; Martini, M. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli volcano using neural networks. Bull. Seismol. Soc. Am. 2006, 96, 1230–1240. [Google Scholar] [CrossRef]
- Esposito, A.M.; D’Auria, L.; Giudicepietro, F.; Peluso, R.; Martini, M. Automatic recognition of landslides based on neural network analysis of seismic signals: An application to the monitoring of Stromboli volcano (Southern Italy). Pure Appl. Geophys. 2013, 170, 1821–1832. [Google Scholar] [CrossRef]
- Taddeucci, J.; Valentine, G.A.; Sonder, I.; White, J.D.L.; Ross, P.-S.; Scarlato, P. The effect of pre-existing craters on the initial development of explosive volcanic eruptions: An experimental investigation. Geophys. Res. Lett. 2013, 40, 507–510. [Google Scholar] [CrossRef]
- Endo, E.T.; Murray, T. Real-time seismic amplitude measurement (RSAM): A volcano monitoring and prediction tool. Bull. Volcanol. 1991, 53, 533–545. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Calvari, S.; Cappello, A.; Corradino, C.; Del Negro, C. Integrating tri-stereo Pleiades images with infrared satellite data to monitor volcanoes: The 2019 Stromboli eruption. EGU Gen. Assem. 2019, 16172. [Google Scholar] [CrossRef]
- Okal, E.A. The generation of T waves by earthquakes. Adv. Geophys. 2008, 49, 1–65. [Google Scholar]
- Ripepe, M.; Marchetti, E.; Ulivieri, G.; Harris, A.; Dehn, J.; Burton, M.; Caltabiano, T.; Salerno, G. Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geol. Soc. Am. 2005, 33, 341–344. [Google Scholar] [CrossRef]
- Marotta, E.; Calvari, S.; Cristaldi, A.; D’Auria, L.; Di Vito, M.A.; Moretti, R.; Peluso, R.; Spampinato, L.; Boschi, E. Reactivation of Stromboli’s summit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity. J. Geophys. Res. 2015, 120, 7376–7395. [Google Scholar] [CrossRef]
- Lipman, P.W.; Banks, N.G. Aa Flow dynamics, Mauna Loa 1984. US Geol. Surv. Prof. Pap. 1987, 1350, 1527–1567. [Google Scholar]
- Calder, E.S.; Luckett, R.; Sparks, R.S.J.; Voight, B. Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufrière Hills Volcano, Montserrat. Geol. Soc. Mem. Lond. 2002, 21, 173–190. [Google Scholar] [CrossRef]
- Loughlin, S.C.; Calder, E.S.; Clarke, A.; Cole, P.D.; Luckett, R.; Mangan, M.T.; Pyle, D.M.; Sparks, R.S.J.; Voight, B.; Watts, R.B. Pyroclastic flows and surges generated by the 25 June 1997 dome collapse, Soufrière Hills Volcano, Montserrat. Geol. Soc. Mem. Lond. 2002, 21, 191–209. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakamura, Y.; Glicken, H. Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J. Volcanol. Geotherm. Res. 1999, 90, 191–207. [Google Scholar] [CrossRef]
- Pino, N.A.; Ripepe, M.; Cimini, G.B. The Stromboli volcano landslides of December 2002: A seismological description. Geophys. Res. Lett. 2004, 31, L02605. [Google Scholar] [CrossRef]
- Calvari, S.; Spampinato, L.; Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. Jour. Volc. Geotherm. Res. 2006, 149, 160–175. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S.; Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March 2007 Vulcanian paroxysm at Stromboli volcano. Earth Plan. Sci. Lett. 2012, 357–358, 249–256. [Google Scholar] [CrossRef]
- Calvari, S. Understanding basaltic lava flow morphologies and structures for hazard assessment. Ann. Geophys. 2019, 62, VO217. [Google Scholar] [CrossRef] [Green Version]
- Giordano, D.; Russell, J.K. Towards a structural model for the viscosity of geological melts. Earth Plan. Sci. Lett. 2018, 501, 202–212. [Google Scholar] [CrossRef]
- Tazieff, H. An Exceptional Eruption: Mt. Niragongo, Jan. 10th, 1977. Bull. Volc. 1977, 40, 189–200. [Google Scholar] [CrossRef]
- Komorowski, J.C. The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): Chronology, evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. Acta Vulc. 2003, 15, 27–62. [Google Scholar]
- Borgia, A.; Linneman, S.; Spencer, D.; Morales, L.; Andre, L. Dynamics of the flow fronts, Arenal Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 1993, 19, 303–329. [Google Scholar] [CrossRef]
- Cigolini, C.; Borgia, A.; Casertano, L. Intra-crater activity, aa-block lava, viscosity and flow dynamics: Arenal Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 1984, 20, 155–176. [Google Scholar] [CrossRef]
- Kilburn, C.R.J.; Guest, J.E. Aa lavas of Mount Etna, Sicily. In Active Lavas: Monitoring and Modelling; Kilburn, C.R.J., Luongo, G., Eds.; UCL Press: London, UK, 1993; pp. 73–106. [Google Scholar]
- Apuani, T.; Corazzato, C.; Cancelli, A.; Tibaldi, A. Stability of a collapsing volcano (Stromboli, Italy): Limit equilibrium analysis and numerical modelling. J. Volcanol. Geotherm. Res. 2005, 144, 191–210. [Google Scholar] [CrossRef]
- Perttu, A.; Caudron, C.; Assink, J.D.; Metz, D.; Tailpied, D.; Perttu, B.; Hibert, C.; Nurfiani, D.; Pilger, C.; Muzli, M.; et al. Reconstruction of the 2018 tsunamigenic flank collapse and eruptive activity at Anak Krakatau based on eyewitness reports, seismo-acoustic and satellite observations. Earth Plan. Sci. Lett. 2020, 541, 116268. [Google Scholar] [CrossRef]
- Darmawan, H.; Yuliantoro, P.; Rakhman, A.; Santoso, A.B.; Humaida, H.; Suryanto, W. Dynamic velocity and seismic characteristics of gravitational rockfalls at the Merapi lava dome. J. Volcanol. Geotherm. Res. 2020, 404, 107010. [Google Scholar] [CrossRef]
- Uhira, K.; Yamasato, H.; Takeo, M. Source mechanism of seismic waves excited by pyroclastic flows observed at Unzen volcano, Japan. J. Geophys. Res. Solid Earth 1994, 99, 17757–17773. [Google Scholar] [CrossRef]
- Wassermann, J. Volcano Seismology. In IASPEI New Manual of Seismological Observatory Practice; Bormann, P., Ed.; GFZ Potsdam: Potsdam, Germany, 2002; Volume 1, p. 42. [Google Scholar]
- Fornaciai, A.; Landi, P.; Armienti, P. Dissolution/crystallization kinetics recorded in the 2002–2003 lavas of Stromboli (Italy). Bull. Volcanol. 2009, 71, 631–641. [Google Scholar] [CrossRef]
Label | Type and Model | Location | Distance from the Craters | Optics | Field of View |
---|---|---|---|---|---|
SPCT | Thermal, FLIR A320 | West SdF flank, 85 m a.s.l. | 1698 m | 90° | 90° × 73° 2150 × 1613 m |
SCT | Thermal, FLIR A655sc | East SdF flank, 165 m a.s.l. | 1538 m | 25° | 25° × 19° 807 × 605 m |
SQV | Visual, Sony FCB-EX480CP | East SdF flank, 390 m a.s.l. | 1027 m | 18× | 48° (wide end) × 2.8° (tele end) 657 × 493 m |
Station | Sensor | Sampling Rate Sps |
---|---|---|
STR1 | Guralp CMG40T | 50 |
STR4 | Guralp CMG40T | 50 |
STRA | Guralp CMG40T | 50 |
STRC | Guralp CMG40T | 50 |
STRE | Guralp CMG40T | 50 |
STRG | Guralp CMG40T | 50 |
IST3 | Nanometrics Trillium120PA | 100 |
Start Time (hh:mm:ss) | End Time (hh:mm:ss) | Distance on the Sea (m) | Speed (m s−1) |
---|---|---|---|
01:50:00.0 | 01:50:20.5 | 141 | 6.9 |
02:35:25.5 | 02:35:50.0 | 108 | 4.4 |
02:45:10.0 | 02:45:21.0 | 118 | 10.7 |
02:48:36.5 | 02:48:47.5 | 120 | 10.9 |
02:51:41.5 | 02:51:47.5 | 140 | 23.3 |
02:54:15.5 | 02:54:27.0 | 140 | 12.2 |
03:02:25.0 | 03:02:42.5 | 134 | 7.7 |
03:06:23.0 | 03:06:40.0 | 165 | 9.7 |
03:37:09.0 | 03:37:25.5 | 145 | 8.8 |
03:39:07.5 | 03:39:22.0 | 141 | 9.7 |
03:41:46.5 | 03:42:13.0 | 155 | 5.9 |
Start Time (hh:mm:ss) | End Time (hh:mm:ss) | Distance on the Slope (m) | Speed (m/s) | Flow Type |
---|---|---|---|---|
01:46:36.5 | 01:47:02.0 | 1028 | 40.3 | PDC |
02:34:45.5 | 02:35:27.0 | 1028 | 24.7 | PDC |
02:38:50.0 | 02:42:32.0 | 1028 | 4.6 | Lava flow |
02:40:00.0 | 02:45:07.0 | 864 | 2.8 | Lava flow |
02:50:54.5 | 02:51:42.0 | 864 | 18.0 | PDC |
02:55:13.0 | 02:56:03.5 | 740 | 14.8 | PDC |
03:00:19.0 | 03:01:04.0 | 699 | 15.5 | PDC |
03:05:43.0 | 03:06:23.0 | 740 | 18.5 | PDC |
03:30:00.0 | 03:31:27.0 | 452 | 5.2 | Lava flow |
03:41:17.0 | 03:41:57.0 | 514 | 12.9 | PDC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sens. 2020, 12, 3010. https://doi.org/10.3390/rs12183010
Calvari S, Di Traglia F, Ganci G, Giudicepietro F, Macedonio G, Cappello A, Nolesini T, Pecora E, Bilotta G, Centorrino V, et al. Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data. Remote Sensing. 2020; 12(18):3010. https://doi.org/10.3390/rs12183010
Chicago/Turabian StyleCalvari, Sonia, Federico Di Traglia, Gaetana Ganci, Flora Giudicepietro, Giovanni Macedonio, Annalisa Cappello, Teresa Nolesini, Emilio Pecora, Giuseppe Bilotta, Veronica Centorrino, and et al. 2020. "Overflows and Pyroclastic Density Currents in March-April 2020 at Stromboli Volcano Detected by Remote Sensing and Seismic Monitoring Data" Remote Sensing 12, no. 18: 3010. https://doi.org/10.3390/rs12183010