Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence
"> Figure 1
<p>(<b>A</b>) Installation diagram of solar-induced chlorophyll fluorescence (SIF) observation systems. The downwelling fiber is equipped with cosine correctors (CC-3; Ocean Optics, Dunedin, FL, USA) and the upwelling fiber is bare, called hemi-con. The downwelling fiber and the upwelling fiber are both equipped with CC-3, called bi-hemi. The downwelling sensor vertically pointed toward the sky to measure bi-hemispheric irradiance and the upwelling was mounted vertically downward to measure the reflected radiance (<b>B</b>) Schematic diagram of SIF observation systems equipped with TTL and splitter fiber for switching between two optical paths (irradiance and radiance). Temperature control box (TCB) providing a constant temperature environment, is composed of an external thermoelectric cooler (TEC) and spectrometer (<b>C</b>) Schematic diagram of SIF observation systems equipped with prism box.</p> "> Figure 2
<p>Experimental setup (<b>left</b>) and the conical footprint (<b>right</b>) of the four systems. (A) in the left shows the position of downwelling sensor and (B) shows that of upwelling sensor. The red ring in the right represents the field of view (FOV) of the conical upwelling sensor.</p> "> Figure 3
<p>The scheme of the tests. Green boxes are four observation systems (SI, SII SIII and SIV); purple boxes represent the different configurations of observation systems in each test; blue boxes are observation targets including grey panel, soil and <span class="html-italic">E. aureum</span>; orange ellipse are the variables used for the comparison of four observation systems.</p> "> Figure 4
<p>The configurations of bi-hemi with larger footprint (blue circle) and hemi-con with small footprint (red circle) with systems II and IV (SII and SIV) at a homogenous grassland field.</p> "> Figure 5
<p>Diagram of measuring the field of view (FOV) of cosine corrector (CC-3).</p> "> Figure 6
<p>Irradiance, radiance and reflectance measured by different systems while the downwelling bare fiber pointing toward grey reference around noon under slightly cloudy (<b>A</b>,<b>C</b>,<b>E</b>) and changeable (<b>B</b>,<b>D</b>,<b>F</b>) conditions.</p> "> Figure 7
<p>Diurnal variations of integration time (<b>A</b>,<b>B</b>) irradiance and (<b>C</b>,<b>D</b>) radiance of different systems with hemi-con configuration while the downward bare fiber pointing toward bare soil background. The right volume is the magnification of integration times (ITs) of systems I and II (SI and SII).</p> "> Figure 8
<p>Reflectance of different systems with (<b>A</b>) hemi-con and (<b>B</b>) bi-hemi configurations while the upwelling sensors pointing toward bare soil background.</p> "> Figure 9
<p>Diurnal variations of integration time of different systems of (<b>A</b>–<b>D</b>) hemi-con and (<b>E</b>–<b>H</b>) bi-hemi configurations (SIV of hemi-con configuration as a reference) while the upwelling sensors pointing toward vegetation with almost same field of view (different viewer height). The right volume specifically shows the integration times (ITs) of SI and SII.</p> "> Figure 10
<p>Irradiance, radiance and reflectance measured by the splitter (SI) and prism systems (SII) of (<b>A</b>,<b>B</b>) hemi-con and (<b>C</b>,<b>D</b>) bi-hemi configurations while the upwelling sensors pointing toward vegetation.</p> "> Figure 11
<p>Reflectance measured by the four systems (<b>A</b>,<b>B</b>) of hemi-con and three systems (<b>C</b>,<b>D</b>) of bi-hemi configurations while the upwelling sensors pointing toward vegetation. (<b>C</b>) shows the data that the upwelling sensors of the three systems have almost same field of view as the conical sensor of SIV (different viewer height), while (<b>D</b>) shows that those three upwelling sensors were mounted at the same heights as that of SIV (different field of view).</p> "> Figure 12
<p>Variances of far-red solar-induced chlorophyll fluorescence (SIF), reflectance at 760 nm and normalized difference vegetation index (NDVI) with the horizontal distance between the plant and the horizontal center of the view of cosine corrector.</p> "> Figure 13
<p>Diurnal variations of retrieved far-red and red SIF from measurements by the four systems of hemi-con configuration while the upwelling sensors pointing toward non-continuous vegetation one two days (<b>A</b>,<b>C</b>) under slightly cloudy but stable sky and (<b>B</b>,<b>D</b>) under changeable cloudy sky) conditions.</p> "> Figure 14
<p>Diurnal variations of retrieved far-red and red solar-induced chlorophyll fluorescence (SIF) from measurements by SII of bi-hemi configuration and SIV of hemi-con configuration while the upwelling sensor pointing toward continuous vegetation at (<b>A</b>–<b>D</b>) the same and (<b>E</b>–<b>H</b>) different heights under different weather conditions (left volume is under clear sky and right volume is under cloudy sky). Shaded areas represent diurnal course of photosynthetic active radiation (PAR) measured by a sunshine sensor BF5.</p> "> Figure 15
<p>Diurnal variations of retrieved far-red and red solar-induced chlorophyll fluorescence (SIF) from measurements by the four systems of bi-hemi configuration while the upwelling sensors pointing toward discontinuous vegetation under different conditions. (<b>A</b>,<b>C</b>) show the data of upwelling hemispherical sensors and conical sensor set at different height, and b and show those set at the same height.</p> "> Figure 16
<p>Reflectance of grassland measured by SII of bi-hemi configuration and SIV of hemi-con configuration.</p> "> Figure A1
<p>Software interface of NJUspec Controller. The box in the upper-left of the interface displays the values and shapes of radiance and irradiance, and their integration time. The box in the upper-right of the interface displays the reflectance of measurement targets. The bottom left of the interface displays the local time, the name of last saved file name, the temperature of inner chamber, outer chamber and motherboard, and the relative humidity of inner chamber and outer chamber. The box in the bottom right of the interface displays the solar-induced chlorophyll fluorescence (SIF) values.</p> "> Figure A2
<p>The temporal dynamics of temperature (Temp.) and relative humidity (RH) of Temperature Control BOX (TCB), Charge Coupled Device (CCD) and air.</p> "> Figure A3
<p>Radiance of four systems acquired under stable illumination condition. The dashed lines represent irradiance value of 150 mW/m<sup>2</sup>/nm.</p> "> Figure A4
<p>Spectral signal to noise ratio of four systems.</p> "> Figure A5
<p>Diurnal variations of integration time of different systems of (A-D) hemi-con and (E-H) Bi-Hemi configurations while the upwelling sensors pointing toward vegetation at the same viewer height (different field of view). The right volume specifically shows integration times of SI and SII.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumental Constructions
2.2. Experimental Setup
2.3. A Test for the FOV of CC-3
2.4. SIF Retrievals
2.5. Statistical Data Analysis
3. Results
3.1. Measurements of Grey Reference and Soil Background
3.2. Measurements of Vegetation Canopy
3.3. Retrievals of SIF from Four Systems
4. Discussion
4.1. Comparison of Different SIF Systems
4.2. Comparison of Hemi-Con and Bi-Hemi Configurations
4.3. Implications for Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Interface of NJUspec Controller
Appendix A.2. Inner Environmental Conditions of SIFprism
Appendix A.3. Radiance of Four Systems Acquired under Stable Illumination Condition
Appendix A.4. Estimation of Signal to Noise Ratio (SNR) of the Four Systems
Appendix A.5. Estimation of Signal to Noise Ratio (SNR) of the Four Systems
References
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Dobrowski, S.; Pushnik, J.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Frankenberg, C.; Berry, J.; Guanter, L.; Joiner, J. Remote sensing of terrestrial chlorophyll fluorescence from space. SPIE Newsroom 2013. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A. New global observations of the terrestrial carbon cycle from gosat: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Frankenberg, C.; Pollock, R.; Lee, R.; Rosenberg, R.; Blavier, J.; Crisp, D.; O’Dell, C.; Osterman, G.; Roehl, C.; Wennberg, P. The orbiting carbon observatory (oco-2): Spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 2015, 8, 301–313. [Google Scholar] [CrossRef]
- Guanter, L.; Aben, I.; Tol, P.; Krijger, J.; Hollstein, A.; Köhler, P.; Damm, A.; Joiner, J.; Frankenberg, C.; Landgraf, J. Potential of the tropospheric monitoring instrument (tropomi) onboard the sentinel-5 precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 2015, 8, 1337–1352. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gómez-Chova, L.; Amorós-López, J.; Vila, J.; Moreno, J. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from gosat space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.-E. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014, 111, E1327–E1333. [Google Scholar] [CrossRef]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.; Verma, M.; Porcar-Castell, A.; Griffis, T.J. Oco-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, eaam5747. [Google Scholar] [CrossRef]
- Walther, S.; Voigt, M.; Thum, T.; Gonsamo, A.; Zhang, Y.; Köhler, P.; Jung, M.; Varlagin, A.; Guanter, L. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob. Chang. Biol. 2016, 22, 2979–2996. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, S.; Rossini, M.; Julitta, T.; Meroni, M.; Schickling, A.; Burkart, A.; Pinto, F.; Rascher, U.; Colombo, R. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sens. Environ. 2015, 164, 270–281. [Google Scholar] [CrossRef]
- Grossmann, K.; Frankenberg, C.; Magney, T.S.; Hurlock, S.C.; Seibt, U.; Stutz, J. Photospec: A new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2018, 216, 311–327. [Google Scholar] [CrossRef]
- MacArthur, A.; Robinson, I.; Rossini, M.; Davis, N.; MacDonald, K. A dual-field-of-view spectrometer system for reflectance and fluorescence measurements (piccolo doppio) and correction of etaloning. In Proceedings of the Fifth International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, France, 22–24 April 2014; pp. 22–24. [Google Scholar]
- Pinto, F.; Damm, A.; Schickling, A.; Panigada, C.; Cogliati, S.; Muller-Linow, M.; Balvora, A.; Rascher, U. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 2016, 39, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.; Müller-Linow, M.; Schickling, A.; Cendrero-Mateo, M.; Ballvora, A.; Rascher, U. Multiangular observation of canopy sun-induced chlorophyll fluorescence by combining imaging spectroscopy and stereoscopy. Remote Sens. 2017, 9, 415. [Google Scholar] [CrossRef]
- Porcar Castell, A.; Mac Arthur, A.; Rossini, M.; Eklundh, L.; Pacheco Labrador, J.; Anderson, K.; Balzarolo, M.; Martín, M.; Jin, H.; Tomelleri, E. Eurospec: At the interface between remote sensing and ecosystem CO2 flux measurements in europe. Biogeosciences 2015, 12, 6103–6124. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, Y.; Zhang, Y.; Chou, S.; Ju, W.; Chen, J.M. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence. In Remote Sensing System Engineering VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; p. 99770C. [Google Scholar]
- Balzarolo, M.; Anderson, K.; Nichol, C.; Rossini, M.; Vescovo, L.; Arriga, N.; Wohlfahrt, G.; Calvet, J.-C.; Carrara, A.; Cerasoli, S. Ground-based optical measurements at european flux sites: A review of methods, instruments and current controversies. Sensors 2011, 11, 7954–7981. [Google Scholar] [CrossRef]
- Daumard, F.; Champagne, S.; Fournier, A.; Goulas, Y.; Ounis, A.; Hanocq, J.-F.; Moya, I. A field platform for continuous measurement of canopy fluorescence. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3358–3368. [Google Scholar] [CrossRef]
- Burkart, A.; Schickling, A.; Mateo, M.P.C.; Wrobel, T.J.; Rossini, M.; Cogliati, S.; Julitta, T.; Rascher, U. A method for uncertainty assessment of passive sun-induced chlorophyll fluorescence retrieval using an infrared reference light. IEEE Sens. J. 2015, 15, 4603–4611. [Google Scholar] [CrossRef]
- Du, S.; Liu, L.; Liu, X.; Guo, J.; Hu, J.; Wang, S.; Zhang, Y. Sifspec: Measuring solar-induced chlorophyll fluorescence observations for remote sensing of photosynthesis. Sensors 2019, 19, 3009. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.J.; Berry, J.A.; DeLucia, E.H.; Wu, J.; Moore, C.E.; Meacham, K.; Cai, Y. Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements. J. Geophys. Res. Biogeosci. 2018, 123, 610–623. [Google Scholar] [CrossRef]
- Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M. Red and far red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett. 2015, 42, 1632–1639. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Zhang, Y.; Wolf, S.; Zhou, S.; Joiner, J.; Guanter, L.; Verma, M.; Sun, Y.; Yang, X. On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based sif retrievals. Remote Sens. Environ. 2018, 205, 276–289. [Google Scholar] [CrossRef]
- Yang, X.; Shi, H.; Stovall, A.; Guan, K.; Miao, G.; Zhang, Y.; Zhang, Y.; Xiao, X.; Ryu, Y.; Lee, J.-E. Fluospec 2—An automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors 2018, 18, 2063. [Google Scholar] [CrossRef]
- Meroni, M.; Barducci, A.; Cogliati, S.; Castagnoli, F.; Rossini, M.; Busetto, L.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Colombo, R. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. Rev. Sci. Instrum. 2011, 82, 043106. [Google Scholar] [CrossRef]
- Pacheco-Labrador, J.; Hueni, A.; Mihai, L.; Sakowska, K.; Julitta, T.; Kuusk, J.; Sporea, D.; Alonso, L.; Burkart, A.; Cendrero-Mateo, M.P. Sun-induced chlorophyll fluorescence i: Instrumental considerations for proximal spectroradiometers. Remote Sens. 2019, 11, 960. [Google Scholar] [CrossRef]
- Garzonio, R.; Di Mauro, B.; Colombo, R.; Cogliati, S. Surface reflectance and sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 2017, 9, 472. [Google Scholar] [CrossRef]
- Anderson, K.; Milton, E.; Rollin, E. Calibration of dual-beam spectroradiometric data. Int. J. Remote Sens. 2006, 27, 975–986. [Google Scholar] [CrossRef]
- Mihai, L.; Mac Arthur, A.; Hueni, A.; Robinson, I.; Sporea, D. Optimized spectrometers characterization procedure for near ground support of esa flex observations: Part 1 spectral calibration and characterisation. Remote Sens. 2018, 10, 289. [Google Scholar] [CrossRef]
- Sabater, N.; Middleton, E.M.; Malenovsky, Z.; Alonso, L.; Verrelst, J.; Huemmrich, K.F.; Campbell, P.K.; Kustas, W.P.; Vicent, J.; Van Wittenberghe, S. Oxygen transmittance correction for solar-induced chlorophyll fluorescence measured on proximal sensing: Application to the nasa-gsfc fusion tower. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5826–5829. [Google Scholar]
- Gu, L.; Wood, J.; Chang, C.Y.; Sun, Y.; Riggs, J. Advancing terrestrial ecosystem science with a novel automated measurement system for sun-induced chlorophyll fluorescence for integration with eddy covariance flux networks. J. Geophys. Res. Biogeosci. 2019, 124, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Van Wittenberghe, S.; Medina, N.S.; Damm, A.; Goulas, Y.; Wieneke, S.; Hueni, A.; Malenovský, Z.; Alonso, L.; Pacheco-Labrador, J. Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 2019, 11, 927. [Google Scholar] [CrossRef] [Green Version]
- Julitta, T. Optical Proximal Sensing for Vegetation Monitoring. Ph.D. Thesis, University of Milano-Bicocca, Milan, Italy, 2015. [Google Scholar]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Liu, J.; Mo, G.; Joiner, J. Angular normalization of gome-2 sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. Geophys. Res. Lett. 2017, 44, 5691–5699. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Wang, Z.; Zhang, B. Measurement and analysis of bidirectional sif emissions in wheat canopies. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2640–2651. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Joiner, J.; Migliavacca, M. Angle matters: Bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from orbiting carbon observatory-2 across biomes. Glob. Chang. Biol. 2018, 24, 5017–5020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Liu, L.; Ju, W.; Zhu, X. Chinaspec: A network of sif observations to bridge flux measurements and remote sensing data. In Proceedings of the Agu Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.; Suárez, L.; Berni, J.A.; Goldhamer, D.; Fereres, E. A pri-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the cwsi thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Hu, J.; Du, S. Modeling the footprint and equivalent radiance transfer path length for tower-based hemispherical observations of chlorophyll fluorescence. Sensors 2017, 17, 1131. [Google Scholar] [CrossRef] [Green Version]
- Plascyk, J.A.; Gabriel, F.C. The fraunhofer line discriminator mkii-an airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans. Instrum. Meas. 1975, 24, 306–313. [Google Scholar] [CrossRef]
- Plascyk, J.A. The mk ii fraunhofer line discriminator (fld-ii) for airborne and orbital remote sensing of solar-stimulated luminescence. Opt. Eng. 1975, 14, 144339. [Google Scholar] [CrossRef]
- Theisen, A.F. Detecting chlorophyll fluorescence from orbit: The fraunhofer line depth model. In From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems; Springer: Berlin, Germany, 2002; pp. 203–232. [Google Scholar]
- Meroni, M.; Colombo, R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sens. Environ. 2006, 103, 438–448. [Google Scholar] [CrossRef]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-induced fluorescence: A new tool for precision farming. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; American Society of Agronomy: Madison, WI, USA, 2003; pp. 209–222. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Dangel, S. Solid laboratory calibration of a nonimaging spectroradiometer. Appl. Opt. 2000, 39, 3754–3764. [Google Scholar] [CrossRef] [PubMed]
Systems | Systems Name | Spectrometer (Spectral Range (nm), FWHM (nm), Slit (μm)) | Optical Switching Methods |
---|---|---|---|
SI | SIFspec2 | QEpro (650–800, 0.3, 25) | TTL and splitter fiber |
SII | SIFprism | QEpro (650–800, 0.3, 25) | Prism and single fiber |
SIII | Fluospec2 | QEpro (730–780, 0.17, 25) | TTL and splitter fiber |
SIV | FLoX | QEpro (650–800, 0.3, 5) | TTL and splitter fiber |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, X.; Li, Z.; Wu, Y.; Zhang, Y. Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2019, 11, 2642. https://doi.org/10.3390/rs11222642
Zhang Q, Zhang X, Li Z, Wu Y, Zhang Y. Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence. Remote Sensing. 2019; 11(22):2642. https://doi.org/10.3390/rs11222642
Chicago/Turabian StyleZhang, Qian, Xiaokang Zhang, Zhaohui Li, Yunfei Wu, and Yongguang Zhang. 2019. "Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence" Remote Sensing 11, no. 22: 2642. https://doi.org/10.3390/rs11222642
APA StyleZhang, Q., Zhang, X., Li, Z., Wu, Y., & Zhang, Y. (2019). Comparison of Bi-Hemispherical and Hemispherical-Conical Configurations for In Situ Measurements of Solar-Induced Chlorophyll Fluorescence. Remote Sensing, 11(22), 2642. https://doi.org/10.3390/rs11222642