Removal of Large-Scale Stripes Via Unidirectional Multiscale Decomposition
"> Figure 1
<p>Stripe noise with different scales in image and corresponding column mean vector (CMV). Where (<b>a</b>) is small-scale stripe, (<b>b</b>) is large-scale stripe, (<b>c</b>) is the CMV of (<b>a</b>), (<b>d</b>) is the CMV of (<b>b</b>).</p> "> Figure 2
<p>Overall flow chart of DUMD (destriping method via unidirectional multiscale decomposition). CCNUC, column-by-column nonuniformity correction.</p> "> Figure 3
<p>Destriping performance of Data 3 (Gaofen-1C, GF-1C). MM, moment matching; IMM, improved MM; SAUTV, spatially adaptive unidirectional total variation. Where (<b>a</b>) is the no-stripe image, (<b>b</b>) is the striped image, (<b>c</b>) is the destriped image processed by MM, (<b>d</b>) is the destriped image processed by IMM, (<b>e</b>) is the destriped image processed by SAUTV, (<b>f</b>) is the destriped image processed by DUMD.</p> "> Figure 3 Cont.
<p>Destriping performance of Data 3 (Gaofen-1C, GF-1C). MM, moment matching; IMM, improved MM; SAUTV, spatially adaptive unidirectional total variation. Where (<b>a</b>) is the no-stripe image, (<b>b</b>) is the striped image, (<b>c</b>) is the destriped image processed by MM, (<b>d</b>) is the destriped image processed by IMM, (<b>e</b>) is the destriped image processed by SAUTV, (<b>f</b>) is the destriped image processed by DUMD.</p> "> Figure 4
<p>Destriping performance of Data 4 (Gaofen1-D, GF-1D). Where (<b>a</b>) is the no-stripe image, (<b>b</b>) is the striped image, (<b>c</b>) is the destriped image processed by MM, (<b>d</b>) is the destriped image processed by IMM, (<b>e</b>) is the destriped image processed by SAUTV, (<b>f</b>) is the destriped image processed by DUMD.</p> "> Figure 5
<p>Destriping performance of Data 6 (Ziyuan3-02, ZY3-02). Where (<b>a</b>) is the no-stripe image, (<b>b</b>) is the striped image, (<b>c</b>) is the destriped image processed by MM, (<b>d</b>) is the destriped image processed by IMM, (<b>e</b>) is the destriped image processed by SAUTV, (<b>f</b>) is the destriped image processed by DUMD.</p> "> Figure 6
<p>CMVs of Data 3 (GF-1C). Where (<b>a</b>) is the CMVs of original image and striped image, (<b>b</b>) is the CMVs of original image and MM-processed image, (<b>c</b>) is the CMVs of original image and IMM-processed image, (<b>d</b>) is the CMVs of original image and SAUTV-processed image, (<b>e</b>) is the CMVs of original image and DUMD-processed image.</p> "> Figure 7
<p>CMVs of Data 4 (GF-1D). Where (<b>a</b>) is the CMVs of original image and striped image, (<b>b</b>) is the CMVs of original image and MM-processed image, (<b>c</b>) is the CMVs of original image and IMM-processed image, (<b>d</b>) is the CMVs of original image and SAUTV-processed image, (<b>e</b>) is the CMVs of original image and DUMD-processed image.</p> "> Figure 8
<p>CMVs of Data 6 (ZY3-02). Where (<b>a</b>) is the CMVs of original image and striped image, (<b>b</b>) is the CMVs of original image and MM-processed image, (<b>c</b>) is the CMVs of original image and IMM-processed image, (<b>d</b>) is the CMVs of original image and SAUTV-processed image, (<b>e</b>) is the CMVs of original image and DUMD-processed image.</p> ">
Abstract
:1. Introduction
2. Analysis of Stripe Noise
2.1. Conversion of the Destriping Problem
2.2. Scale Characteristics of Stripes
3. Methodology
3.1. Overall Description of DUMD
3.2. The Framework of Column-by-Column Nonuniformity Correction (CCNUC)
3.3. Unidirectional Multiscale Decomposition
3.4. Deviation Estimation of Adjacent Columns
3.5. Cumulative Error Compensation
4. Results
4.1. Experimental Data
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Chen, C.; Pan, J.; Zhu, Y.; Chang, X. A Relative Radiometric Calibration Method Based on the Histogram of Side-Slither Data for High-Resolution Optical Satellite Imagery. Remote Sens. 2018, 10, 381. [Google Scholar] [CrossRef]
- Huo, L.-J.; He, B.; Zhou, D.-B. A destriping method with multi-scale variational model for remote sensing images. Opt. Precis. Eng. 2017, 25, 198–207. [Google Scholar]
- Huo, L.; Zhou, D.; Wang, D.; Liu, R.; He, B. Staircase-scene-based nonuniformity correction in aerial point target detection systems. Appl. Opt. 2016, 55, 7149–7156. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping CMODIS data by power filtering. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Shi, G.-M.; Wang, X.-T.; Zhang, L.; Liu, Z. Removal of random stripe noises in remote sensing image by directional filter. J. Infrared Millim. Waves. 2008, 27, 214–218. [Google Scholar] [CrossRef]
- Infante, O.S. Wavelet analysis for the elimination of striping noise in satellite images. Opt. Eng. 2001, 40, 1309. [Google Scholar] [CrossRef]
- Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet—Fourier filtering. Opt. Express. 2009, 17, 8567. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.J.; Stitt, J.R.; Leath, D.M. Improved Finite Impulse Response Filters for Enhanced Destriping of Geostationary Satellite Data. Remote Sens. Environ. 1998, 66, 235–249. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering. ISPRS J. Photogramm. Remote Sens. 2011, 66, 620–636. [Google Scholar] [CrossRef]
- Horn, B.K.; Woodham, R.J. Destriping LANDSAT MSS images by histogram modification. Comput. Graph. Image Process. 1979, 10, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Weinreb, M.; Xie, R.; Lienesch, J.; Crosby, D. Destriping GOES images by matching empirical distribution functions. Remote Sens. Environ. 1989, 29, 185–195. [Google Scholar] [CrossRef]
- Gadallah, F.L.; Csillag, F.; Smith, E.J.M. Destriping multisensor imagery with moment matching. Int. J. Remote Sens. 2000, 21, 2505–2511. [Google Scholar] [CrossRef]
- Chang, W.W.; Guo, L.; Fu, Z.Y.; Liu, K. A new destriping method of imaging spectrometer images. In Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2–4 November 2007. [Google Scholar]
- Shen, H.; Zhang, L. A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1492–1502. [Google Scholar] [CrossRef]
- Bouali, M.; Ladjal, S. Toward Optimal Destriping of MODIS Data Using a Unidirectional Variational Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2924–2935. [Google Scholar] [CrossRef]
- Zhou, G.; Fang, H.; Yan, L.; Zhang, T.; Hu, J. Removal of stripe noise with spatially adaptive unidirectional total variation. Optik 2014, 125, 2756–2762. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Shen, H.; Yuan, Q.; Jiao, Y.; Zhang, L. Stripe Noise Separation and Removal in Remote Sensing Images by Consideration of the Global Sparsity and Local Variational Properties. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3049–3060. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Hao, Z.-H. Research on the nonuniformity correction of linear TDI CCD remote camera. Opt. Tech. 2003, 5633, 527–535. [Google Scholar]
- Chen, C.; Pan, J.; Wang, M.; Zhu, Y. Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly. Sensors 2018, 18, 3402. [Google Scholar] [CrossRef] [PubMed]
Order | Satellite ID | Features | Image Size | Bandwidths (nm) | Resolution of MS (m) | |||
---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | |||||
1 | Beijing-2 | City | 6254 × 6071 | 440~510 | 510~590 | 600~670 | 760~910 | 3.2 |
2 | GF-1B | City and Mountain | 4333 × 3948 | 450~520 | 520~590 | 630~690 | 770~890 | 8 |
3 | GF-1C | Farmland and Cloud | 4387 × 4442 | 450~520 | 520~590 | 630~690 | 770~890 | 8 |
4 | GF-1D | Gulf and Mountain | 4278 × 4131 | 450~520 | 520~590 | 630~690 | 770~890 | 8 |
5 | GF-2 | Mountain | 7058 × 6705 | 450~520 | 520~590 | 630~690 | 770~890 | 4 |
6 | ZY3-02 | Farmland and Lake | 8625 × 8877 | 450~520 | 520~590 | 630~690 | 770~890 | 5.8 |
Index | Method | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Data 6 | AVERAGE |
---|---|---|---|---|---|---|---|---|
RMSE | MM | 61.33 | 148.77 | 213.00 | 156.21 | 7.25 | 17.23 | 100.63 |
IMM | 47.14 | 59.83 | 70.08 | 68.02 | 9.37 | 11.17 | 44.27 | |
SAUTV | 44.28 | 57.82 | 69.37 | 59.65 | 9.72 | 8.99 | 41.64 | |
DUMD | 51.46 | 104.22 | 156.85 | 110.21 | 4.57 | 12.86 | 73.36 | |
SNR | MM | 25.21 | 19.50 | 17.95 | 19.48 | 29.19 | 25.38 | 22.78 |
IMM | 27.60 | 27.36 | 27.31 | 26.26 | 27.77 | 28.23 | 27.42 | |
SAUTV | 28.23 | 27.82 | 27.50 | 27.60 | 27.42 | 30.18 | 28.12 | |
DUMD | 26.82 | 22.53 | 20.46 | 22.16 | 33.19 | 27.17 | 25.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Wang, M.; Chang, X.; Zhang, Z.; Feng, X. Removal of Large-Scale Stripes Via Unidirectional Multiscale Decomposition. Remote Sens. 2019, 11, 2472. https://doi.org/10.3390/rs11212472
He L, Wang M, Chang X, Zhang Z, Feng X. Removal of Large-Scale Stripes Via Unidirectional Multiscale Decomposition. Remote Sensing. 2019; 11(21):2472. https://doi.org/10.3390/rs11212472
Chicago/Turabian StyleHe, Luxiao, Mi Wang, Xueli Chang, Zhiqi Zhang, and Xiaoxiao Feng. 2019. "Removal of Large-Scale Stripes Via Unidirectional Multiscale Decomposition" Remote Sensing 11, no. 21: 2472. https://doi.org/10.3390/rs11212472