Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea
<p>A map of the North Sea. Study area is delimited by the black box and is between 53–59° of latitude and 4–9° of longitude.</p> "> Figure 2
<p>Distribution of events end event wave energy according to direction (<b>a</b>,<b>c</b>) and wavelength (<b>b</b>,<b>d</b>) for the whole spectrum (<b>a</b>,<b>b</b>) and the swell component (<b>c</b>,<b>d</b>). Dashed lines show the approximate satellite flight direction.</p> "> Figure 3
<p>Altimeter versus ECMWF co-located SWH values: (<b>a</b>) Altimeter in SAR mode; and (<b>b</b>) altimeter in PLRM mode.</p> "> Figure 4
<p>Correlation between the standard deviation, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">σ</mi> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math>, of SSH in SAR and PLRM mode.</p> "> Figure 5
<p>Correlation between the standard deviation, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">σ</mi> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math>, of SSH and SWH<sub>s</sub>, SWH<sub>w</sub> and SWH<sub>t</sub>: (<b>a</b>,<b>c</b>,<b>e</b>) altimeter in SAR mode; (<b>b</b>,<b>d</b>,<b>f</b>) altimeter in PLRM mode.</p> "> Figure 6
<p>Multiple correlation between <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">σ</mi> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math>, SWH<sub>t</sub>, and T<sub>t</sub> both for the SAR (<b>a</b>) and PLRM data (<b>b</b>).</p> "> Figure 7
<p>Effect of wave direction: Only events that fall outside the threshold angle α<sub>thr</sub> are considered.</p> "> Figure 8
<p>Correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math> and SWH<sub>t</sub> as a function of the threshold angle, α<sub>thr</sub>.</p> "> Figure 9
<p>Schematic of the SAR altimeter conceptual model.</p> "> Figure 10
<p>Aliasing effect, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">σ</mi> <mi mathvariant="normal">A</mi> </msub> </mrow> </semantics></math>, as a function of the angle, α, between the satellite flight path and the wave direction for four different average wavelengths, L<sub>m</sub>, and for a fixed wave height, H<sub>m</sub> = 3 m.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jensen, J.R.; Raney, R.K. Delay/Doppler radar altimeter: Better measurement precision. In Proceedings of the IGARSS ’98: Sensing and Managing the Environment: 1998 IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; Stein, T., Ed.; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 1998. [Google Scholar]
- Raney, R.K. The Delay/Doppler Radar Altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Wingham, D.J.; Wallis, D.W. The Rough Surface Impulse Response of a Pulse-Limited Altimeter with an Elliptical Antenna Pattern. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 232–235. [Google Scholar] [CrossRef]
- Benassai, G.; Migliaccio, M.; Montuori, A. Sea wave numerical simulations with COSMO-SkyMed© SAR data. J. Coast. Res. 2013, 1, 660–665. [Google Scholar] [CrossRef]
- Reale, F.; Dentale, F.; Carratelli, E.P. Numerical Simulation of Whitecaps and Foam Effects on Satellite Altimeter Response. Remote Sens. 2014, 6, 3681–3692. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhou, W.; Sun, Z.; Yang, Y.; Lin, J.; Wang, G.; Cao, W.; Yang, Q. Estimating the Augmented Reflectance Ratio of the Ocean Surface When Whitecaps Appear. Remote Sens. 2015, 7, 13606–13625. [Google Scholar] [CrossRef] [Green Version]
- Dibarboure, G.; Boy, F.; Desjonqueres, J.D.; Labroue, S.; Lasne, Y.; Picot, N.; Poisson, J.C.; Thibaut, P. Investigating Short-Wavelength Correlated Errors on Low-Resolution Mode Altimetry. J. Atmos. Ocean. Technol. 2014, 31, 1337–1362. [Google Scholar] [CrossRef]
- Peral, E.; Rodríguez, E.; Esteban-Fernández, D. Impact of Surface Waves on SWOT’s Projected Ocean Accuracy. Remote Sens. 2015, 7, 14509–14529. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.A.; Plant, W.J. An analysis of the effects of swell and surface roughness spectra on microwave backscatter from the ocean. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Gommenginger, C.; Cipollini, P.; Snaith, H.; West, L.; Passaro, M. SAR altimetry over the open and coastal ocean: Status and Open issues. In Proceedings of the Ocean SAR Altimetry Expert Group Meeting, Southampton, UK, 26–27 June 2013; Available online: http://www.satoc.eu/projects/CP4O/docs/SARALT_EG_pdfs/cg1_CP4O_SARExpert_2627June2013.pdf (accessed on 15 February 2018).
- Gommenginger, C.; Martin-Puig, C.; Amarouche, L.; Raney, R.K. Review of State of Knowledge for SAR Altimetry over Ocean. Report of the EUMETSAT JASON-CS SAR Mode Error Budget Study; EUMETSAT Reference, EUM/RSP/REP/14/749304, Version 2.2; National Oceanography Centre: Southampton, UK, 2013; p. 57. [Google Scholar]
- Moreau, T.; Labroue, S.; Thibaut, P.; Amarouche, L.; Boy, F.; Picot, N. Sensitivity of SAR Mode Altimeter to Swell Effect. In Proceedings of the CryoSat Third User Workshop, Dresden, Germany, 12–14 March 2013; Ouwehand, L., Ed.; ESA Communications ESTEC: Noordwijk, The Netherlands, 2014. [Google Scholar]
- Garcia, E.S.; Sandwell, D.T.; Smith, W.H.F. Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophys. J. Int. 2014, 196, 1402–1422. [Google Scholar] [CrossRef] [Green Version]
- Galin, N.; Wingham, D.J.; Cullen, R.; Fornari, M.; Smith, W.H.F.; Abdalla, S. Calibration of the CryoSat-2 Interferometer and Measurement of Across-Track Ocean Slope. IEEE Trans. Geosci. Remote Sens. 2013, 51, 57–72. [Google Scholar] [CrossRef]
- Fenoglio-Marc, L.; Dinardo, S.; Scharroo, R.; Roland, A.; Dutour Sikiric, M.; Lucas, B.; Becker, M.; Benveniste, J.; Weiss, R. The German Bight: A validation of CryoSat-2 altimeter data in SAR mode. Adv. Space Res. 2015, 55, 2641–2656. [Google Scholar] [CrossRef]
- Dinardo, S.; Fenoglio-Marc, L.; Buchhaupt, C.; Becker, M.; Scharro, R.; Fernandes, M.J.; Benveniste, J. Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv. Space Res. 2017. [Google Scholar] [CrossRef]
- Buchhaupt, C.; Fenoglio-Marc, L.; Dinardo, S.; Scharroo, R.; Becker, M. A fast convolution based waveform modell for conventional and unfocused SAR altimetry. Adv. Space Res. 2017. [Google Scholar] [CrossRef]
- Reale, F.; Dentale, F.; Carratelli, E.P.; Torrisi, L. Remote Sensing of Small-Scale Storm Variations in Coastal Seas. J. Coast. Res. 2014, 30, 130–141. [Google Scholar] [CrossRef]
- Carratelli, E.P.; Dentale, F.; Reale, F. Numerical Pseudo-Random Simulation of SAR Sea and Wind Response. In Proceedings of the Advances in SAR Oceanography from Envisat and ERS Missions (SEASAR 2006), Frascati, Italy, 23–26 January 2006; Lacoste, H., Ouwehand, L., Eds.; ESA Publications Division ESTEC: Noordwijk, The Netherlands, 2006. [Google Scholar]
- Montuori, A.; Ricchi, A.; Benassai, G.; Migliaccio, M. Sea Wave Numerical Simulations and Verification in Tyrrhenian Costal Area with X-Band Cosmo-Skymed SAR Data. In Proceedings of the ESA, SOLAS & EGU Joint Conference “Earth Observation for Ocean-Atmosphere Interactions Science”, Frascati, Italy, 29 November–2 December 2011; Ouwehand, L., Ed.; ESA Communications ESTEC: Noordwijk, The Netherlands, 2012. [Google Scholar]
Parameters | SWHt | SWHw | SWHs |
---|---|---|---|
ASWH (m) | 1.68 | 1.20 | 0.94 |
SSSWH (m2) | 1.54 | 74,620 | 37,484 |
En/Entot | 1.00 | 0.66 | 0.33 |
Parameters | Lt | Lw | Ls |
---|---|---|---|
A (m) | 51.92 | 29.14 | 73.45 |
SD (m) | 27.83 | 22.43 | 38.90 |
Altimeter Mode | Swell (SWHs) | Wind (SWHw) | Total (SWHt) |
---|---|---|---|
SAR mode | 0.15 | 0.30 | 0.41 |
PLRM mode | 0.07 | 0.12 | 0.11 |
Altimeter Mode | Swell (Ts) | Wind (Tw) | Total (Tt) |
---|---|---|---|
SAR mode | 0.25 | 0.26 | 0.24 |
PLRM mode | 0.11 | 0.12 | 0.11 |
Altimeter Mode | Total (SWHt) |
---|---|
SAR mode | 0.41 |
PLRM mode | 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, F.; Dentale, F.; Carratelli, E.P.; Fenoglio-Marc, L. Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sens. 2018, 10, 1100. https://doi.org/10.3390/rs10071100
Reale F, Dentale F, Carratelli EP, Fenoglio-Marc L. Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sensing. 2018; 10(7):1100. https://doi.org/10.3390/rs10071100
Chicago/Turabian StyleReale, Ferdinando, Fabio Dentale, Eugenio Pugliese Carratelli, and Luciana Fenoglio-Marc. 2018. "Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea" Remote Sensing 10, no. 7: 1100. https://doi.org/10.3390/rs10071100
APA StyleReale, F., Dentale, F., Carratelli, E. P., & Fenoglio-Marc, L. (2018). Influence of Sea State on Sea Surface Height Oscillation from Doppler Altimeter Measurements in the North Sea. Remote Sensing, 10(7), 1100. https://doi.org/10.3390/rs10071100