Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation
"> Figure 1
<p>The sunlight signal intensity measured in the spectral range 755–765 nm with the spectral calibration system, an OL-750D double monochromator from Gooch & Housego (Orlando, FL, USA), using different slit widths. The vertical lines represent the positions of the centre wavelengths associated with specific configurations of the double monochromator. The same colour coding was used for wavelength positions corresponding to the FWHM values. Original radiometrically-calibrated data provided by Chris MacLellan, NERC Field Spectroscopy Facility, University of Edinburgh, U.K.</p> "> Figure 2
<p>Schematic of the Piccolo system double bifurcated fore optic cable assembly showing the fibre core configuration. Misalignment of the fibre core with the spectrometer slit could lead to signal attenuation, and input geometry errors lead to geometry errors.</p> "> Figure 3
<p>Report on Piccolo system calibration for QEPro 01651 as an example provided by Piccolo system suppliers.</p> "> Figure 4
<p>Report on Piccolo system calibration for QEPro 01652 as an example provided by Piccolo system suppliers.</p> "> Figure 5
<p>Piccolo Doppio characterization using as the light source multiple pencil-type reference lamps, with: (1) spectrometer QEPro; (2) spectrometer USB2000+ both from Ocean Optics; (3) Raspberry Pi system; (4) PC for spectrometers remote control; (5) NERC 6” integrating sphere optimized for pen-ray lamp entrance; (6) pen-ray emission lamp (Ne/Ar); (7) pen-ray lamps’ power supply unit; (8) the covered optical fibre input for down-welling measurements; the dashed lines represent the power cables, and the continuous lines represent the optical fibres for signal collection.</p> "> Figure 6
<p>Piccolo Doppio characterization using as the light source a narrow band spectral calibration source, with: (1) spectrometer QEPro; (2) spectrometer USB2000+ both from Ocean Optics; (3) Raspberry Pi system; (4) PC for spectrometers remote control, (5) double monochromator OL750D from Gooch & Housego; (6) the double bifurcated optical fibre system, with FOV-limited fore optics to one input and cosine corrected to the other input; (7) EX-99X LDSL high intensity light source; 8) the LDSL power supply controller unit; (9) OL750D controller; (10) PC for OL750D remote control.</p> "> Figure 7
<p>Narrow band spectral calibration source (OL750D double monochromator) characterization setup using multiple pencil-type reference lamps: (1) OL750D controller; (2) double monochromator OL750D from Gooch & Housego; (3) pen-ray emission lamp (Ne/Ar); (4) NERC 6” integrating sphere optimized for pen-ray lamp entrance to improve the signal at the monochromator entrance; (5) pen-ray lamps’ power supply unit.</p> "> Figure 8
<p>The sample curve corresponding to the Gaussian fit in Origin Lab.</p> "> Figure 9
<p>The wavelength corrections for (<b>a</b>) Ar and (<b>b</b>) Ne lamps’ emission lines measured with the QEP00114 (λ<sub>DUT</sub>; DUT, device under test) after optimization at 763.511 nm and the corresponding errors (<b>c</b>,<b>d</b>) related to the standard values (λ<sub>standard</sub>). The red lines represent the standard emission lines for Ar and Ne lamps.</p> "> Figure 10
<p>The wavelength corrections for (<b>a</b>) Ar and (<b>b</b>) Ne lamps’ emission lines measured with the QEP00981 (λ<sub>DUT</sub>; DUT, device under test) after optimization at 763.511 nm and the corresponding errors (<b>c</b>,<b>d</b>) related to the standard values (λ<sub>standard</sub>). The red lines represent the standard emission lines for Ar and Ne lamps.</p> "> Figure 11
<p>The wavelength corrections for (<b>a</b>) Ar and (<b>b</b>) Ne lamps’ emission lines measured with spectrometer USB2H1635 (λ<sub>DUT</sub>; DUT, device under test) after optimization at 763.511 nm and the corresponding errors (<b>c</b>,<b>d</b>) related to the standard values (λ<sub>standard</sub>). The red lines represent the standard emission lines for Ar and Ne lamps.</p> "> Figure 11 Cont.
<p>The wavelength corrections for (<b>a</b>) Ar and (<b>b</b>) Ne lamps’ emission lines measured with spectrometer USB2H1635 (λ<sub>DUT</sub>; DUT, device under test) after optimization at 763.511 nm and the corresponding errors (<b>c</b>,<b>d</b>) related to the standard values (λ<sub>standard</sub>). The red lines represent the standard emission lines for Ar and Ne lamps.</p> "> Figure 12
<p>Ne (<b>left</b>) and Ar (<b>right</b>) lamps’ emission line measured with the double monochromator system OL 750D from Gooch & Housego and the corresponding standard absorption lines (red lines) [<a href="#B34-remotesensing-10-00289" class="html-bibr">34</a>] for slits’ combination at the monochromator entrance, middle and exit: (<b>a</b>,<b>b</b>) 5 mm, 5 mm and 5 mm; (<b>c</b>,<b>d</b>) 2.5 mm, 5 mm and 2.5 mm; (<b>e</b>,<b>f</b>) 1.25 mm, 5 mm and 1.25 mm; (<b>h</b>,<b>f</b>) 0.05 mm, 0.5 mm and 0.05 mm. The coloured lines represent the Gaussian fit applied to the multiple peaks under the envelope</p> "> Figure 12 Cont.
<p>Ne (<b>left</b>) and Ar (<b>right</b>) lamps’ emission line measured with the double monochromator system OL 750D from Gooch & Housego and the corresponding standard absorption lines (red lines) [<a href="#B34-remotesensing-10-00289" class="html-bibr">34</a>] for slits’ combination at the monochromator entrance, middle and exit: (<b>a</b>,<b>b</b>) 5 mm, 5 mm and 5 mm; (<b>c</b>,<b>d</b>) 2.5 mm, 5 mm and 2.5 mm; (<b>e</b>,<b>f</b>) 1.25 mm, 5 mm and 1.25 mm; (<b>h</b>,<b>f</b>) 0.05 mm, 0.5 mm and 0.05 mm. The coloured lines represent the Gaussian fit applied to the multiple peaks under the envelope</p> "> Figure 13
<p>The fluorescence spectrometer wavelength correction within the spectral ranges (<b>a</b>) 680 nm to 687.3 and (<b>b</b>) 762 nm to 763.2 nm, using the high-resolution configuration of OL750D.</p> "> Figure 14
<p>The FWHM values as determined from the Gaussian fit applied to the QEP00114 signal corresponding to the (<b>a</b>) Ar/Ne and (<b>b</b>) OL750D emission.</p> ">
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Field Spectrometers Spectral Characterization with Reference Emission Light Source
3.2. Field Spectrometers Spectral Characterization with Monochromator Light Source
3.2.1. Monochromator Light Source Characterization with Reference Emission Lamp
3.2.2. Field Spectrometers Spectral Characterization with Monochromator Light Source
3.2.3. Fluorescence Spectrometer QEP00114 Spectral Resolution
4. Discussion
- -
- -
- to optimise the wavelength correction close to O2-A and/or O2-B features, obtaining minimum error at specific wavelengths, but higher error outside this range. This method still relies on a polynomial fit. This method can be a better option for high resolution spectrometers used for SIF studies. If the correction is optimised to only one wavelength close to the O2-A absorption line, an error of ±0.125 nm (Table 2) is obtained for the O2-B line. Therefore, it is highly recommended to have wavelength correction at both telluric bands using an additional line lamp (e.g., Ne) to minimize the error. Furthermore, the double monochromator could be used at any wavelength, but an uncertainty due to limited standard calibration has to be considered.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G.C. (Ed.) Chlorophyll a Fluorescence: A Signature of Photosynthesis; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 1–42. ISBN 978-1-4020-3217-2. [Google Scholar]
- European Space Agency (ESA). Report for Mission Selection: FLEX, ESA SP-1330/2; European Space Agency: Noordwijk, The Netherlands, 2015; ISBN 978-92-9221-428-9. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Jauffraud, E.; Bassaler, P.; Coppo, P.; Taiti, A.; Battistelli, E.; Rossi, M. FLEX & Sentinel 3: A tandem to monitor vegetation. In Proceedings of the 2016 European Space Agency Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- ESA Website. Available online: https://earth.esa.int/web/guest/missions/esa-future-missions/flex/news/-/article/sentinels-and-flex-join-forces (accessed on 10 November 2017).
- Website of Workshop on Land Product Validation and Evolution (LPVE 2018). Available online: https://nikal.eventsair.com/QuickEventWebsitePortal/lpve-conference-2018/esaconference/ExtraContent/ContentPage?page=1 (accessed on 10 November 2017).
- Schaepman, M. Calibration of a Field Spectroradiometer. Ph.D. Thesis, University of Zurich, Zürich, Switzerland, 1998. [Google Scholar]
- Kohler, D.D.R.; Bissett, W.P.; Steward, R.G.; Davis, C.O. New approach for the radiometric calibration of spectral imaging systems. Opt. Express 2004, 12, 2463–2477. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, K.P.; A’Hearn, M.F.; Baca, M.; Delamere, A.; Desnoyer, M.; Farnham, T.; Groussin, O.; Hampton, D.; Ipatov, S.; Lisse, J.; et al. Invited article: Deep impact instrument calibration. Rev. Sci. Instrum. 2008, 79, 091301. [Google Scholar] [CrossRef] [PubMed]
- Schaepman, M.E.; Dangel, S. Solid laboratory calibration of a nonimaging spectroradiometer. Appl. Opt. 2000, 39, 3754–3764. [Google Scholar] [CrossRef] [PubMed]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 3883–3930. [Google Scholar] [CrossRef]
- Guanter, L.; Rossini, M.; Colombo, R.; Meroni, M.; Frankenberg, C.; Lee, J.-E.; Joiner, J. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sens. Environ. 2013, 133, 52–61. [Google Scholar] [CrossRef]
- Meroni, M.; Busetto, L.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W. Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sens. Environ. 2010, 114, 363–374. [Google Scholar] [CrossRef]
- Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 2011, 115, 1882–1892. [Google Scholar] [CrossRef]
- Ding, W.; Zhao, F.; Yang, L. Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence. In Proceedings of the SPIE International Conference on Optical and Photonics Engineering (icOPEN 2016), Chengdu, China, 26–30 September 2016; Volume 10250. [Google Scholar]
- Hueni, A.; Damm, A.; Kneubühler, M.; Schläpfer, D.; Schaepman, M.E. Field and airborne spectroscopy cross validation—Some considerations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1117–1135. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Gomez-Chova, L.; Meroni, M.; Preusker, R.; Fischer, J.; Moreno, J. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Rossini, M.; Meroni, M.; Migliavacca, M.; Manca, G.; Cogliati, S.; Busetto, L.; Picchi, V.; Cescatti, A.; Seufert, G.; Colombo, R. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agric. For. Meteorol. 2010, 150, 1283–1296. [Google Scholar] [CrossRef]
- Meroni, M.; Barducci, A.; Cogliati, S.; Castagnoli, F.; Rossini, M.; Busetto, L.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Colombo, R.; et al. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. Rev. Sci. Instrum. 2011, 82, 043106. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, S.; Rossini, M.; Julitta, T.; Meroni, M.; Schickling, A.; Burkart, A.; Pinto, F.; Rascher, U.; Colombo, R. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sens. Environ. 2015, 164, 270–281. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E.; Szabó, K.; Kocsányi, L. Spectrometer for fast measurements of in vivo reflection, absorption and fluorescence in the visible and near infrared. Remote Sens. Environ. 1994, 48, 18–24. [Google Scholar] [CrossRef]
- Julitta, T.; Rossini, M.; Burkart, A.; Cogliati, S.; Davies, N.; Hom, M.; Mac Arthur, A.; Middleton, E.M.; Rascher, U.; Schickling, A.; et al. Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. Remote Sens. 2016, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Basics of Spectral Measurement. JETI Technische Instrumente GmbH. Available online: www.jeti.com/cms/images/jeti_com/down/basics/basics.pdf (accessed on 20 January 2018).
- Ocean Optics Website. Available online: https://oceanoptics.com/wp-content/uploads/Spectrometer-Wavelength-Calibration-Instructions.pdf (accessed on 20 January 2018).
- Yoon, H.W.; Kacker, R.N. Handbook (NIST HB)–157; NIST Publications: Gaithersburg, MD, USA, 2015.
- Alonso, L.; Gómez-Chova, L.; Vila-Francés, J.; Amorós-López, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved Fraunhofer Line Discrimination method for vegetation fluorescence quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Choi, K.Y.; Milton, E.J. Estimating the spectral response function of the CASI-2. In Proceedings of the Annual Conference of the Remote Sensing and Photogrammetry Society, Falmouth, UK, 15–17 September 2008. [Google Scholar]
- Liu, L.; Liu, X.; Hu, J. Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level. Eur. J. Remote Sens. 2015, 48, 743–762. [Google Scholar] [CrossRef]
- Centre of Nanotechnology and Materials for Nanoelectronics Website. Available online: http://nanotech.fzu.cz/26/data/PenRay.pdf (accessed on 31 January 2018).
- Pen-Ray Line Sources. Available online: http://pas.ce.wsu.edu/CE415/PenRay_lamp_spectra.pdf (accessed on 31 January 2018).
- Mac Arthur, A.; Robinson, I.; Rossini, M.; Davis, N.; MacDonald, K. A dual-field-of-view spectrometer system for reflectance and fluorescence measurements (Piccolo Doppio) and correction of etaloning. In Proceedings of the 5th International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, France, 22–24 April 2014. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Version 5.5.2); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. Available online: https://physics.nist.gov/asd (accessed on 29 January 2018).
- Reader, J.; Sansonetti, C.J.; Bridges, J.M. Irradiances of spectral lines in mercury pencil lamps. Appl. Opt. 1996, 35, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, K.; An, S. Cubic B-Spline Interpolation and Realization. In Communications in Computer and Information Science, Proceedings of the Information Computing and Applications (ICICA 2011), Qinhuangdao, China, 28–31 October 2011; Liu, C., Chang, J., Yang, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 243. [Google Scholar]
- Ocean Optics. Calibrating the Wavelength of the Spectrometer n.d. Available online: https://oceanoptics.com/wp-content/uploads/Spectrometer-Wavelength-Calibration-Instructions.pdf (accessed on 31 January 2018).
- Mini-Spectrometers. Hamamatsu. Available online: https://www.hamamatsu.com/resources/pdf/ssd/mini-spectrometer_kacc9003e.pdf (accessed on 31 January 2018).
- Avantes Catalog, X. Available online: https://www.avantes.com/support/downloads/catalog/356-avantes-catalog-x/file (accessed on 31 January 2018).
Entrance, Middle, Exit Slits + 5 mm Aperture at Exit (mm) | Reference Light Source | Spectral Range (nm) | Sampling Interval (nm) |
---|---|---|---|
0.05, 0.5, 0.05 | Neon | 686–696 | 0.05 |
0.05, 0.5, 0.05 | Argon | 758–768 | 0.05 |
0.05, 0.5, 0.05 | Argon | 768–778 | 0.05 |
1.25, 5.0, 1.25 | Neon | 686–696 | 0.05 |
1.25, 5.0, 1.25 | Argon | 758–768 | 0.05 |
1.25, 5.0, 1.25 | Argon | 768–778 | 0.05 |
2.5, 5.0, 2.5 | Neon | 686–696 | 0.05 |
2.5, 5.0, 2.5 | Argon | 758–768 | 0.05 |
2.5, 5.0, 2.5 | Argon | 768–778 | 0.05 |
5.0, 5.0, 5.0 | Neon | 686–696 | 0.05 |
5.0, 5.0, 5.0 | Argon | 758–768 | 0.05 |
5.0, 5.0, 5.0 | Argon | 768–778 | 0.05 |
DUT | Ar | Ne | ||||||
---|---|---|---|---|---|---|---|---|
λo | λref | λerror. | FWHM | λo | λref | λerror. | FWHM | |
nm | nm | nm | nm | nm | nm | nm | nm | |
QE00114 | 696..431 | 696.543 | 0.112 | 0.293 | 653.080 | 653.290 | 0.210 | 0.388 |
706.639 | 706.722 | 0.082 | 0.366 | 667.637 | 667.830 | 0.193 | 0.301 | |
727.252 | 727.294 | 0.042 | 0.439 | 671.522 | 671.700 | 0.178 | 0.290 | |
738.368 | 738.398 | 0.030 | 0.435 | 692.825 | 692.950 | 0.125 | 0.504 | |
750.374 | 750.387 | 0.013 | 0.429 | 724.479 | 724.520 | 0.041 | 0.379 | |
763.511 | 763.511 | 0.000 | 0.429 | - | - | - | - | |
772.4367 | 772.376 | −0.061 | 0.422 | - | - | - | - | |
794.851 | 794.818 | −0.033 | 0.331 | - | - | - | - | |
QE00981 | 696.326 | 696.543 | 0.2170 | 1.941 | 587.390 | 588.190 | 0.800 | 1.446 |
706.553 | 706.722 | 0.1690 | 1.943 | 593.794 | 594.480 | 0.686 | 1.720 | |
727.221 | 727.294 | 0.0729 | 1.999 | 613.941 | 614.310 | 0.369 | 1.514 | |
738.356 | 738.398 | 0.0420 | 2.017 | 650.724 | 650.650 | −0.074 | 1.732 | |
750.873 | 750.387 | −0.4860 | 2.554 | 668.030 | 667.830 | −0.200 | 1.791 | |
763.511 | 763.511 | 0.0000 | 1.998 | 693.332 | 692.950 | −0.382 | 1.902 | |
772.429 | 772.376 | −0.0539 | 1.964 | 725.050 | 724.520 | −0.530 | 1.980 | |
794.857 | 794.818 | −0.0388 | 1.966 | - | - | - | - | |
811.36 | 811.531 | 0.171 | 2.461 | - | - | - | - | |
826.467 | 826.452 | −0.015 | 2.071 | - | - | - | - | |
841.938 | 842.465 | 0.5272 | 3.179 | - | - | - | - | |
912.031 | 912.297 | 0.2656 | 2.307 | - | - | - | - | |
USB2H16355 | 696.479 | 696.543 | 0.063 | 1.651 | 585.120 | 585.260 | 0.14 | 1.820 |
706.678 | 706.722 | 0.044 | 1.367 | 587.913 | 588.190 | 0.277 | 1.907 | |
727.266 | 727.294 | 0.028 | 1.693 | 594.338 | 594.480 | 0.142 | 1.720 | |
738.369 | 738.398 | 0.028 | 1.684 | 609.337 | 609.620 | 0.283 | 1.700 | |
750.920 | 750.387 | −0.533 | 2.378 | 614.236 | 614.310 | 0.074 | 1.936 | |
763.511 | 763.511 | 0 | 1.705 | 650.559 | 650.650 | 0.091 | 1.519 | |
772.416 | 772.376 | −0.04 | 1.670 | 667.736 | 667.830 | 0.094 | 1.665 | |
811.437 | 811.531 | 0.094 | 2.135 | 692.890 | 692.950 | 0.06 | 1.697 | |
826.533 | 826.452 | −0.081 | 1.833 | 724.487 | 724.520 | 0.033 | 1.672 | |
842.127 | 842.465 | 0.338 | 2.900 | 743.881 | 743.890 | 0.009 | 1.576 | |
912.117 | 912.297 | 0.181 | 1.458 | - | - | - | - |
Ar | Ne | |||||||
---|---|---|---|---|---|---|---|---|
OL750D Slits | λmeas | FWHM | λref | λcorr. | λmeas | FWHM | λref | λcorr. |
mm | nm | nm | nm | nm | nm | nm | nm | nm |
0.05, 0.5 and 0.05 | 763.855 | 0.077 | 763.511 | −0.344 | 693.223 | 0.045 | 692.95 | −0.273 |
1.25, 5 and 1.25 | 763.552 | 0.969 | 763.511 | −0.041 | 693.004 | 1.066 | 692.95 | −0.054 |
2.5, 5 and 2.5 | 763.561 | 1.813 | 763.511 | −0.05 | 693.022 | 2.014 | 692.95 | −0.072 |
5, 5 and 5 | 763.534 | 3.161 | 763.511 | −0.023 | 692.994 | 3.519 | 692.95 | −0.044 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, L.; Mac Arthur, A.; Hueni, A.; Robinson, I.; Sporea, D. Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation. Remote Sens. 2018, 10, 289. https://doi.org/10.3390/rs10020289
Mihai L, Mac Arthur A, Hueni A, Robinson I, Sporea D. Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation. Remote Sensing. 2018; 10(2):289. https://doi.org/10.3390/rs10020289
Chicago/Turabian StyleMihai, Laura, Alasdair Mac Arthur, Andreas Hueni, Iain Robinson, and Dan Sporea. 2018. "Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation" Remote Sensing 10, no. 2: 289. https://doi.org/10.3390/rs10020289
APA StyleMihai, L., Mac Arthur, A., Hueni, A., Robinson, I., & Sporea, D. (2018). Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation. Remote Sensing, 10(2), 289. https://doi.org/10.3390/rs10020289