Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China
<p>Areas surveyed.</p> "> Figure 2
<p>Plot of effectiveness and applicability (standard score); applicability is represented by the B-W score (standard score); and effectiveness is the average effective score from experts.</p> "> Figure 3
<p>Plot of effectiveness and applicability (numbers).</p> ">
Abstract
:1. Introduction
2. The Best-Worst Scaling Method
3. Survey Design
3.1. Mitigation Measures in the Survey
3.2. B-W Survey
3.3. Latent Class Modeling
3.4. Sample
4. Results and Analysis
4.1. BWS Results
4.2. LCM Results
5. Conclusions and Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Den Elzen, M.G.J.; Beltran, A.M.; Hof, A.F.; van Ruijven, B.; van Vliet, J. Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 491–512. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Chang. Biol. 2002, 8, 519–530. [Google Scholar] [CrossRef]
- Meyer-Aurich, A.; Weersink, A.; Janovicek, K.; Deen, B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agric. Ecosyst. Environ. 2006, 117, 119–127. [Google Scholar] [CrossRef]
- Katayanagi, N.; Fumoto, T.; Hayano, M.; Takata, Y.; Kuwagata, T.; Shirato, Y.; Sawano, S.; Kajiura, M.; Sudo, S.; Ishigooka, Y.; et al. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Sci. Total Environ. 2016, 547, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Statistical Yearbook 2013: World Food and Agriculture. Available online: http://www.fao.org/docrep/018/i3107e/i3107e00.htm (accessed on 3 December 2016).
- Ministry of Agriculture. Notification of the Preparation for the Work of Soil Testing and Formulated Fertilization in 2014 from General Offices of Ministry of Agriculture and Ministry of Finance. Available online: http://www.moa.gov.cn/govpublic/CWS/201405/t20140523_3915330.htm (accessed on 20 December 2016). (In Chinese)
- Minamikawa, K.; Fumoto, T.; Iizumi, T.; Cha-Un, N.; Pimple, U.; Nishimori, M.; Ishigooka, Y.; Kuwagata, T. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 2016, 566, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.A.; Seferin, M.; Maciel, V.G.; Flôres, S.H.; Ayub, M.A.Z. Life cycle greenhouse gas emissions from rice production systems in Brazil: A comparison between minimal tillage and organic farming. J. Clean. Prod. 2016, 139, 799–809. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Sun, B.; Zhao, H.; Lu, F.; Zhang, L. Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland. Agric. Syst. 2016, 146, 1–10. [Google Scholar] [CrossRef]
- Ray, P.K.; Jana, A.K.; Maitra, D.N.; Saha, M.N.; Chaudhury, J.; Saha, S.; Saha, A.R. Fertilizer prescriptions on soil test basis for jute, rice and wheat in a Typic Ustochrept. J. Indian Soc. Soil. Sci. 2000, 43, 79–84. [Google Scholar]
- Arunrat, N.; Wang, C.; Pumijumnong, N. Alternative cropping systems for greenhouse gases mitigation in rice field: A case study in Phichit province of Thailand. J. Clean. Prod. 2016, 133, 657–671. [Google Scholar] [CrossRef]
- Wang, W.; Koslowski, F.; Nayak, D.R.; Smith, P.; Saetnan, E.; Ju, X.; Guo, L.; Han, G.; De Perthuis, C.; Lin, E.; et al. Greenhouse gas mitigation in Chinese agriculture: Distinguishing technical and economic potentials. Glob. Environ. Chang. 2014, 26, 53–62. [Google Scholar] [CrossRef]
- Rochecouste, J.F.; Dargusch, P.; Cameron, D.; Smith, C. An analysis of the socio-economic factors influencing the adoption of conservation agriculture as a climate change mitigation activity in Australian dryland grain production. Agric. Syst. 2014, 135, 20–30. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.M.; Haggblade, S.; Kabwe, S. Determinants of adoption and disadoption of minimum tillage by cotton farmers in eastern Zambia. Agric. Ecosyst. Environ. 2016, 231, 54–67. [Google Scholar] [CrossRef]
- Stuart, D.; Schewe, R.L.; McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 2014, 36, 210–218. [Google Scholar] [CrossRef]
- Vellinga, T.V.; De Haan, M.H.A.; Schils, R.L.M.; Evers, A.; Van den Pol–van Dasselaar, A. Implementation of GHG mitigation on intensive dairy farms: Farmers’ preferences and variation in cost effectiveness. Livest. Sci. 2011, 137, 185–195. [Google Scholar] [CrossRef]
- Zhu, H.J.; Tian, Z.H. Analysis on the rice farmer’s willingness to use low-carbon technologies measures: Based on the survey of the rice-producing areas in Southern China. J. Agrot. Econ. 2013, 215, 62–71. (In Chinese) [Google Scholar] [CrossRef]
- Morgan, M.I.; Hine, D.W.; Bhullar, N.; Loi, N.M. Landholder adoption of low emission agricultural practices: A profiling approach. J. Environ. Psychol. 2015, 41, 35–44. [Google Scholar] [CrossRef]
- Page, G.; Bellotti, B. Farmers value on-farm ecosystem services as important, but what are the impediments to participation in PES schemes? Sci. Total Environ. 2015, 515, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Finn, A.; Louviere, J.J. Determining the appropriate response to evidence of public concern: The case of food safety. J. Public Policy Mark. 1992, 11, 12–25. [Google Scholar]
- Lusk, J.L.; Briggeman, B.C. Food values. Am. J. Agric. Econ. 2009, 91, 184–196. [Google Scholar] [CrossRef]
- Flynn, T.N.; Louviere, J.J.; Peters, T.J.; Coast, J. Best-worst scaling: What it can do for health care research and how to do it. J. Health Econ. 2007, 26, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Louviere, J.J.; Lings, I.; Islam, T.; Gudergan, S.; Flynn, T. An introduction to the application of (case1) best–worst scaling in marketing research. Int. J. Res. Mark. 2013, 30, 292–303. [Google Scholar] [CrossRef]
- Ochieng, B.J.; Hobbs, J.E. Incentives for cattle producers to adopt an E. coli vaccine: An application of best–worst scaling. Food Policy 2016, 59, 78–87. [Google Scholar] [CrossRef]
- Marley, A.A.J.; Louviere, J.J. Some probabilistic models of best, worst, and best–worst choices. J. Math. Psychol. 2005, 49, 464–480. [Google Scholar] [CrossRef]
- Cohen, E. Applying best–worst scaling to wine marketing. Int. J. Wine Bus. Res. 2009, 21, 8–23. [Google Scholar] [CrossRef]
- Coltman, T.; Devinney, T.M.; Keating, B. Best-worst scaling approach to predict customer choice for 3PL services. J. Bus. Logist. 2011, 32, 139–152. [Google Scholar] [CrossRef]
- Louviere, J.J.; Flynn, T.N. Using best-worst scaling choice experiments to measure public perceptions and preferences for healthcare reform in Australia. Patient Cent. Outcomes Res. 2010, 3, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.K.; Jones, D.L.; Edwards-Jones, G.; Cross, P. Informing decision making in agricultural greenhouse gas mitigation policy: A Best–Worst Scaling survey of expert and farmer opinion in the sheep industry. Environ. Sci. Policy 2013, 29, 46–56. [Google Scholar] [CrossRef]
- Dumbrell, N.P.; Kragt, M.E.; Gibson, F.L. What carbon farming activities are farmers likely to adopt? A best–worst scaling survey. Land Use Policy 2016, 54, 29–37. [Google Scholar] [CrossRef]
- Flynn, T.N.; Marley, A.A.J. Best-worst scaling: Theory and methods. In Handbook of Choice Modelling; Hess, S., Daly, A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2014. [Google Scholar]
- Da, C.T.; Phuoc, L.H.; Duc, H.N.; Troell, M.; Berg, H. Use of wastewater from striped catfish (pangasianodon hypophthalmus) pond culture for integrated rice–fish–vegetable farming systems in the Mekong Delta, Vietnam. Agroecol. Sust. Food 2015, 39, 580–597. [Google Scholar] [CrossRef]
- Gnahoua, J.B.G.; Ettien, D.J.B.; N’zué, B.; De Neve, S.; Boeckx, P. Assessment of low-input technologies to improve productivity of early harvested cassava in Côte d’Ivoire. Agroecol. Sustain. Food 2016, 40, 941–964. [Google Scholar] [CrossRef]
- Cai, Z.C.; Xing, G.X.; Yan, X.Y.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Smith, K.A.; Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 2004, 20, 255–263. [Google Scholar] [CrossRef]
- Xu, H.; Cai, Z.C.; Jia, Z.J.; Tsuruta, H. Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period. In Methane Emissions from Major Rice Ecosystems in Asia; Springer: Dordrecht, The Netherlands, 2000; pp. 327–332. Available online: https://link.springer.com/chapter/10.1007/978-94-010-0898-3_27 (accessed on 24 May 2017).
- Yagi, K.; Tsuruta, H.; Minami, K. Possible options for mitigating methane emission from rice cultivation. Nutr. Cycl. Agroecosyst. 1997, 49, 213–220. [Google Scholar] [CrossRef]
- Wassmann, R.; Lantin, R.S.; Neue, H.U.; Buendia, L.V.; Corton, T.M.; Lu, Y. Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr. Cycl. Agroecosyst. 2000, 58, 23–36. [Google Scholar] [CrossRef]
- Sloane, N.J.A. A Library of Orthogonal Arrays. Available online: http://www2.research.att.com/~njas/oadir/ (accessed on 11 May 2016).
- Marti, J. A best–worst scaling survey of adolescents’ level of concern for health and non-health consequences of smoking. Soc. Sci. Med. 2012, 75, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, M.L.; Arcos, F.D. Applying best–worst scaling in a stated preference analysis of forest management programs. J. For. Econ. 2012, 18, 381–394. [Google Scholar] [CrossRef]
- Louviere, J.J. What you don’t know might hurt you: Some unresolved issues in the design and analysis of discrete choice experiments. Environ. Resour. Econ. 2006, 34, 173–188. [Google Scholar] [CrossRef]
- Greene, W.; Hensher, D.A. latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Roeder, K.; Lynch, K.G.; Nagin, D.S. Modeling uncertainty in latent class membership: A case study in criminology. J. Am. Stat. Assoc. 1999, 94, 766–776. [Google Scholar] [CrossRef]
- Poot-López, G.R.; Hernández, J.M.; Gasca-Leyva, E. Input management in integrated agriculture–aquaculture systems in Yucatan: Tree spinach leaves as a dietary supplement in tilapia culture. Agric. Syst. 2010, 103, 98–104. [Google Scholar] [CrossRef]
- Lagerkvist, C.J.; Okello, J.; Karanja, N. Anchored vs. relative best–worst scaling and latent class vs. hierarchical bayesian analysis of best–worst choice data: Investigating the importance of food quality attributes in a developing country. Food Qual. Preference 2012, 25, 29–40. [Google Scholar] [CrossRef]
- Adamsen, J.M.; Rundle-Thiele, S.; Whitty, J.A. Best-worst scaling. Reflections on presentation, analysis, and lessons learnt from case 3 BWS experiments. Mark. Soc. Res. 2013, 21, 9–27. [Google Scholar]
- Bartolucci, F.; Farcomeni, A. Information matrix for hidden Markov models with covariates. Stat. Comput. 2015, 25, 515–526. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; Van Kessel, C.; Van Groenigen, K.J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Ahmad, S.; Li, C.; Dai, G.; Zhan, M.; Wang, J.; Pan, S.; Cao, C. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res. 2009, 106, 54–61. [Google Scholar] [CrossRef]
- Ministry of Agriculture. The Implement Opinion Regarding Fighting against Agricultural Non-Point Pollution Issued from the Ministry of Agriculture. Available online: http://www.moa.gov.cn/zwllm/zcfg/qnhnzc/201504/t20150413_4524372.htm (accessed on 15 December 2016). (In Chinese)
Mitigation Measures | Input Elements Management | Soil and Water Management | New Science and Technology |
---|---|---|---|
1 = Reducing the use of chemical fertilizers | ✕ | ✕ | |
2 = Adopting no-till cropping | ✕ | ✕ | |
3 = Returning stubble and straw to field | ✕ | ✕ | ✕ |
4 = Applying controlled-release fertilizers | ✕ | ✕ | |
5 = Mixed use of organic and chemical fertilizers | ✕ | ✕ | |
6 = Reducing the use of chemical pesticides | ✕ | ||
7 = Applying intermittent irrigation | ✕ | ✕ | |
8 = Applying low-carbon rice seeds (high nitrogen efficiency and low permeability) | ✕ | ✕ | |
9 = Applying aquaculture in rice paddy | ✕ | ✕ | |
10 = Planting green manure | ✕ | ✕ | |
11 = Applying soil testing and formulated fertilization | ✕ | ✕ | ✕ |
Items | Choice Sets | Number of Appearance in the Survey | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CS1 | CS2 | CS3 | CS4 | CS5 | CS6 | CS7 | CS8 | CS9 | CS10 | CS11 | CS12 | ||
MM1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 6 |
MM2 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 6 |
MM3 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 6 |
MM4 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 6 |
MM5 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 6 |
MM6 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 6 |
MM7 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 6 |
MM8 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 6 |
MM9 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 6 |
MM10 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 |
MM11 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 6 |
Number of items in the choice set | 4 | 4 | 8 | 8 | 4 | 6 | 4 | 4 | 6 | 8 | 4 | 6 |
Most Applicable | Least Applicable | |
---|---|---|
Adopting no-till cropping | ||
Returning stubble and straw to field | ||
Applying controlled-release fertilizers | ||
Mixed use of organic and chemical fertilizers | ||
Reducing the use of chemical pesticides | ||
Planting green manure |
Variable | Description | Mean | Std. Dev. |
---|---|---|---|
Gender | 1 = Female; 2 = Male | 1.89 | 0.320 |
Age | Years of age in 2016 | 52.11 | 9.221 |
Education | Years of received education | 8.47 | 4.721 |
Part time | The months on non-agricultural job in last year | 3.06 | 4.789 |
Area (hectares) | Total rice farming areas | 2.71 | 6.240 |
Plots | Number of rice planting plots | 10.75 | 13.963 |
Soil quality | Self-evaluation of soil quality; 1 = very poor; 2 = relatively poor; 3 = general; 4 = relatively good; 5 = very good | 3.28 | 0.904 |
Cooperative | 1 = Join an agricultural cooperative; 0 = otherwise | 0.15 | 0.361 |
Family income (thousand yuan) | Total family income (including agricultural and non-agricultural) | 124.11 | 385.302 |
Mitigation Measures | (1) Total Best | (2) Total Worst | (3) Aggregated B-W Score | (4) B/W Score (Standard Score) | (5) Ranking Based on Standard Score | (6) Sqrt B-W | (7) Standardized Sqrt Interval Scale (Relatively Important) | (8) Ranking Based on Standardized Scale |
---|---|---|---|---|---|---|---|---|
Applying soil testing and formulated fertilization | 232 | 32 | 200 | 0.3175 | 1 | 2.6926 | 100 | 1 |
Applying controlled-release fertilizers | 146 | 49 | 97 | 0.1540 | 3 | 1.7261 | 64.1076 | 2 |
Returning stubble and straw to field | 181 | 62 | 119 | 0.1889 | 2 | 1.7086 | 63.4563 | 3 |
Mixed use of organic and chemical fertilizers | 147 | 54 | 93 | 0.1476 | 4 | 1.6499 | 61.2763 | 4 |
Applying aquaculture in rice paddy | 141 | 145 | −4 | −0.0064 | 5 | 0.9861 | 36.6232 | 5 |
Applying low-carbon rice seeds | 77 | 95 | −18 | −0.0286 | 6 | 0.9003 | 33.4360 | 6 |
Reducing the use of chemical fertilizers | 87 | 134 | −47 | −0.0746 | 7 | 0.8058 | 29.9253 | 7 |
Reducing the use of chemical pesticides | 57 | 121 | −64 | −0.1016 | 8 | 0.6863 | 25.4904 | 8 |
Planting green manure | 71 | 157 | −86 | −0.1365 | 10 | 0.6725 | 24.9753 | 9 |
Applying intermittent irrigation | 58 | 137 | −79 | −0.1254 | 9 | 0.6507 | 24.1649 | 10 |
Adopting no-till cropping | 63 | 275 | −212 | −0.3365 | 11 | 0.4786 | 17.7760 | 11 |
L2 | BIC(L2) | LL | BIC(LL) | |
---|---|---|---|---|
Class 1 | 1674.9597 | 1432.9538 | −838.8662 | 1924.3922 |
Class 2 | 1582.4707 | 1400.9663 | −792.6217 | 1892.4047 |
Class 3 | 1541.4420 | 1420.4391 | −772.1073 | 1911.8775 |
Class 4 | 1511.7904 | 1451.2889 | −757.2815 | 1942.7273 |
Attributes | Class1 Coef. | Class2 Coef. | Wald | p-Value |
---|---|---|---|---|
Input elements management | 0.2946 | −0.2946 | 15.3710 | 8.8 × 10−5 |
Soil and water management | −0.4962 | 0.4962 | 24.3703 | 8.0 × 10−7 |
New science and technology | −0.1659 | 0.1659 | 9.1533 | 0.0025 |
Model for classes | ||||
Gender | 0.2328 | −0.2328 | 0.3201 | 0.57 |
Age | 0.0502 ** | −0.0502 ** | 5.8974 | 0.015 |
Education | 0.0827 | −0.0827 | 2.0697 | 0.15 |
Part time | 0.1097 ** | −0.1097 ** | 6.8488 | 0.0089 |
Area | −0.1334 | 0.1334 | 2.1673 | 0.14 |
Plots | 0.0328 ** | −0.0328 ** | 4.2592 | 0.039 |
Soil quality | 0.0100 | −0.0100 | 0.0040 | 0.95 |
Cooperative | 0.1122 | −0.1122 | 0.0625 | 0.80 |
Family income | 0.0003 | −0.0003 | 0.0565 | 0.81 |
Intercept | −3.9034 | 3.9034 | 5.7765 | 0.016 |
Prob. | 0.5944 | 0.4056 | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Q.; Zhang, L.; Zhang, J. Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China. Sustainability 2017, 9, 1066. https://doi.org/10.3390/su9061066
Tong Q, Zhang L, Zhang J. Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China. Sustainability. 2017; 9(6):1066. https://doi.org/10.3390/su9061066
Chicago/Turabian StyleTong, Qingmeng, Lu Zhang, and Junbiao Zhang. 2017. "Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China" Sustainability 9, no. 6: 1066. https://doi.org/10.3390/su9061066
APA StyleTong, Q., Zhang, L., & Zhang, J. (2017). Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China. Sustainability, 9(6), 1066. https://doi.org/10.3390/su9061066