A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands
<p>The geographical positions of the 26 reference points: (A) Ionian Sea; (B) Aegean Sea; (C) Sea of Crete; (D) Levantine Sea; and (E) Libyan Sea (figure processed from Google Earth (2017)).</p> "> Figure 2
<p>Wind speed at 80 m height, evaluation corresponding to all 26-reference points. ECMWF data were processed (<b>a</b>) for the 11-year period (2005–2015), and AVISO data set (<b>b</b>) for the 6-year period (2010–2015).</p> "> Figure 3
<p>Zone A wind speed evaluation at 80 m height; (<b>a</b>) wind speed intervals associated with the wind rose charts; (<b>b</b>) wind speed mean values for different intervals of the period studied (1 January 2005 to 31 December 2015.); (<b>c</b>) wind roses corresponding to point A4; (<b>d</b>) wind roses corresponding to point A5.</p> "> Figure 4
<p>Zone B wind speed evaluation at 80 m height; (<b>a</b>) wind speed intervals associated with the wind rose charts; (<b>b</b>) wind speed mean values for different intervals of the period studied (1 January 2005 to 31 December 2015.); (<b>c</b>) wind roses corresponding to point B3; (<b>d</b>) wind roses corresponding to point B4.</p> "> Figure 5
<p>Zone C wind speed evaluation at 80 m height; (<b>a</b>) wind speed intervals associated with the wind rose charts; (<b>b</b>) wind speed mean values for different intervals of the period studied (1 January 2005 to 31 December 2015.); (<b>c</b>) wind roses corresponding to point C6; (<b>d</b>) wind roses corresponding to point C7.</p> "> Figure 6
<p>Zone D wind speed evaluation at 80 m height; (<b>a</b>) wind speed intervals associated with the wind rose charts; (<b>b</b>) wind speed mean values for different intervals of the period studied (1 January 2005 to 31 December 2015.); (<b>c</b>) wind roses corresponding to point D1; (<b>d</b>) point D2.</p> "> Figure 7
<p>Zone E wind speed evaluation at 80 m height; (<b>a</b>) wind speed intervals associated with the wind rose charts; (<b>b</b>) wind speed mean values for different intervals of the period studied (1 January 2005 to 31 December 2015.); (<b>c</b>) wind roses corresponding to point E1; (<b>d</b>) wind roses corresponding to point E3.</p> "> Figure 8
<p>Main wave parameters, evaluation corresponding to all 26-reference points. ECMWF data were processed (<b>a</b>) significant wave height (m); (<b>b</b>) wave period.</p> "> Figure 8 Cont.
<p>Main wave parameters, evaluation corresponding to all 26-reference points. ECMWF data were processed (<b>a</b>) significant wave height (m); (<b>b</b>) wave period.</p> "> Figure 9
<p>Zone A, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 10
<p>Zone B, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 11
<p>Zone C, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 12
<p>Zone D, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 13
<p>Zone E, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 13 Cont.
<p>Zone E, evaluation of the wave conditions considering the ECMWF data for the 11-year interval 2005–2015; (<b>a</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>b</b>) <span class="html-italic">H<sub>s</sub></span> mean values comparison of diurnal against nocturnal for each season; (<b>c</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for total time; (<b>d</b>) <span class="html-italic">T<sub>m</sub></span> mean values comparison of diurnal against nocturnal for each season.</p> "> Figure 14
<p>Wind power density, annual average, diurnal mean, nocturnal mean and maximum mean for the 10 reference points considered.</p> "> Figure 15
<p>Siemens SWT 3.6-120 wind turbine power curve.</p> "> Figure 16
<p>Assessment of the Siemens SWT 3.6-120 wind turbine performances. The results are based on the ECMWF data (2005–2015) and they are presented in terms of the mean values for: (<b>a</b>) capacity factor (%); (<b>b</b>) operating capacity (%); (<b>c</b>) rated capacity (%).</p> "> Figure 16 Cont.
<p>Assessment of the Siemens SWT 3.6-120 wind turbine performances. The results are based on the ECMWF data (2005–2015) and they are presented in terms of the mean values for: (<b>a</b>) capacity factor (%); (<b>b</b>) operating capacity (%); (<b>c</b>) rated capacity (%).</p> "> Figure 17
<p>Wave power density, Pwave, annual average, diurnal mean, nocturnal mean and maximum mean, for the 10 reference points considered.</p> "> Figure 18
<p>Bivariate distributions corresponding to five reference points. ECMWF data processed for (<b>a</b>) point A5; (<b>b</b>) point B3; (<b>c</b>) point C6; (<b>d</b>) point D2; (<b>e</b>) point E3.</p> "> Figure 18 Cont.
<p>Bivariate distributions corresponding to five reference points. ECMWF data processed for (<b>a</b>) point A5; (<b>b</b>) point B3; (<b>c</b>) point C6; (<b>d</b>) point D2; (<b>e</b>) point E3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Target Areas
2.2. The ECMWF Data Set
2.3. The Aviso Date Set
2.4. Wind Power Potential
2.5. Wave Power Potential
3. Results
3.1. Analysis of the Wind Intensity Distribution
3.2. Analysis of Wave Intensity Distribution
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
AVISO | archiving, validation and interpretation of satellite oceanographic |
Cf | capacity factor |
DER | distributed energy resources |
ECMWF | European Centre for Medium-Range Weather Forecasts |
Hs | wave height |
LCOE | levelized the cost of electricity |
MG | microgrid |
MWP | mean wave period |
OC | operating capacity |
Pwave | wave power density index |
Pwtgenerated | the output energy generated by a wind turbine |
Pwind | wind power density index |
RC | rated capacity |
RES | renewable energy resources |
SWH | significant height of combined wind-waves and swell |
Tm | wave periodicity |
U10 | wind speed at 10 m |
U80 | wind speed at 80 m |
WEC | wave energy convertor |
References
- Ansell, A.D.; Gibson, R.N.; Barnes, M. An Annual Review Oceanography and Marine Biology; Taylor & Francis: Abingdon, UK, 2005; Volume 35. [Google Scholar]
- Marineplan. Available online: http://www.marineplan.es/ES/fichas_kml/iho.html (accessed on 11 December 2016).
- Worldatlas. Available online: http://www.worldatlas.com/aatlas/infopage/seaofcrete.htm (accessed on 11 December 2016).
- Revolvy. Available online: https://www.revolvy.com/main/index.php?s=Levantine%20Sea (accessed on 11 December 2016).
- Hellenic National Meteorological Service. Available online: www.hnms.gr/hnms/english/meteorology/full_story_html?dr_url=%2Fhnms%2Fdocrep%2Fdocs%2Fmisc%2FClimateOfGreek (accessed on 5 December 2016).
- YPEKA. Available online: http://www.ypeka.gr/LinkClick.aspx?fileticket=CEYdUkQ719k%3D (accessed on 8 December 2016).
- Marzband, M.; Ardeshiri, R.R.; Moafi, M.; Uppal, H. Distributed generation for economic benefit maximization through coalition formation based on Game Theory. Int. Trans. Electr. Energy Syst. 2017, 27, e2313. [Google Scholar] [CrossRef]
- Marzband, M.; Parhizi, N.; Adabi, J. Optimal energy management for stand-alone microgrids based on multi-period imperialist competition algorithm considering uncertainties: Experimental validation. Int. Trans. Electr. Energy Syst. 2015, 26, 1358–1372. [Google Scholar] [CrossRef]
- Marzband, M.; Ghazimirsaeid, S.S.; Uppal, H.; Fernando, T. A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electr. Power Syst. Res. 2016, 143, 624–633. [Google Scholar] [CrossRef]
- Marzband, M.; Moghaddamb, M.M.; Akoredec, M.F.; Khomeyranib, G. Adaptive load shedding scheme for frequency stability enhancement in microgrids. Electr. Power Syst. Res. 2016, 140, 78–86. [Google Scholar] [CrossRef]
- Marzband, M.; Javadi, M.; Domínguez-García, J.L.; Moghaddam, M.M. Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties. IET Gener. Transm. Distrib. 2016, 10, 2999–3009. [Google Scholar] [CrossRef]
- Marzband, M.; Parhizi, N.; Savaghebi, M.; Guerrero, J.M. Distributed smart decision-making for a multi-microgrid system based on a hierarchical interactive architecture. IEEE Trans. Energy Convers. 2016, 31, 637–648. [Google Scholar] [CrossRef]
- Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Guerrero, J.M. An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with markov chain. IEEE Syst. J. 2015, 100, 1–11. [Google Scholar] [CrossRef]
- Rusu, L.; Onea, F. Assessment of the performances of various wave energy converters along the European continental coasts. Energy 2015, 82, 889–904. [Google Scholar] [CrossRef]
- Rusu, E. Evaluation of the wave energy conversion efficiency in various coastal environments. Energies 2014, 7, 4002–4018. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renew. Energy 2016, 85, 687–703. [Google Scholar] [CrossRef]
- Silva, D.; Rusu, E.; Soares, C.G. Evaluation of various technologies for wave energy conversion in the portuguese nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef]
- Morim, J.; Cartwright, N.; Etemad, S.A.; Strauss, D.; Hemer, M. A review of wave energy estimates for nearshore shelf waters off Australia. Int J. Mar. Energy 2014, 7, 57–70. [Google Scholar] [CrossRef]
- Quirapas, M.A.J.R.; Lin, H.; Abundo, M.L.S.; Brahim, S.; Santos, D. Ocean renewable energy in Southeast Asia: A review. Renew. Sustain. Energy Rev. 2015, 41, 799–817. [Google Scholar] [CrossRef]
- Rusu, L.; Onea, F. The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power. Renew. Sustain. Energy Rev. 2017, 75, 1348–1362. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. Study on the influence of the distance to shore for a wave energy farm operating in the central part of the Portuguese nearshore. Energy Convers. Manag. 2016, 114, 209–223. [Google Scholar] [CrossRef]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Angelelli, E.; Bellotti, G.; Romano, A.; Krontira, Y.; Troianos, D.; Suffredini, R.; Franceschi, G.; Cantù, M.; Airoldi, L.; et al. Boosting Blue Growth in a Mild Sea: Analysis of the Synergies Produced by a Multi-Purpose Offshore Installation in the Northern Adriatic, Italy. Sustainability 2015, 7, 6804–6853. [Google Scholar] [CrossRef]
- Makris, C.; Galiatsatou, P.; Tolika, K.; Anagnostopoulou, C.; Kombiadou, K.; Prinos, P.; Velikou, K.; Kapelonis, Z.; Tragou, E.; Androulidakis, Y.; et al. Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dyn. 2016, 66, 1603–1635. [Google Scholar] [CrossRef]
- Onea, F.; Deleanu, L.; Rusu, L.; Georgescu, C. Evaluation of the wind energy potential along the Mediterranean Sea coasts. Energy Explor. Exploit. 2016, 34, 766–792. [Google Scholar] [CrossRef]
- Onea, F.; Raileanu, A.; Rusu, E. Evaluation of the Wind Energy Potential in the Coastal Environment of Two Enclosed Seas. Adv. Meteorol. 2015, 2015, 808617. [Google Scholar] [CrossRef]
- Petrakopoulou, F. The Social Perspective on the Renewable Energy Autonomy of Geographically Isolated Communities: Evidence from a Mediterranean Island. Sustainability 2017, 9, 327. [Google Scholar] [CrossRef]
- Kim, G.; Lee, M.E.; Lee, K.S.; Park, J.S.; Jeong, W.M.; Kang, S.K.; Soh, J.G.; Kim, H. An overview of ocean renewable energy resources in Korea. Renew. Sustain. Energy Rev. 2012, 16, 2278–2288. [Google Scholar] [CrossRef]
- Zanuttigh, B.; Angelelli, E.; Kortenhaus, A.; Koca, K.; Krontira, Y.; Koundouri, P. A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting. Renew. Energy 2016, 85, 1271–1289. [Google Scholar] [CrossRef]
- Zabihian, F.; Fung, A.S. Review of marine renewable energies: case study of Iran. Renew. Sustain. Energy Rev. 2011, 15, 2461–2474. [Google Scholar] [CrossRef]
- Wang, S.J.; Yuan, P.; Li, D.; Jiao, Y.H. An overview of ocean renewable energy in China. Renew. Sustain. Energy Rev. 2011, 15, 91–111. [Google Scholar] [CrossRef]
- Hutcheson, F.; Andrés, A.; Jeffrey, H. Risk vs. Reward: A Methodology to Assess Investment in Marine Energy. Sustainability 2016, 8, 873. [Google Scholar] [CrossRef]
- Jinchao, L.; Xian, G.; Jinying, L. A Comparison of Electricity Generation System Sustainability among G20 Countries. Sustainability 2016, 8, 1276. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. The expected efficiency and coastal impact of a hybrid energy farm operating in the Portuguese nearshore. Energy 2016, 97, 411–423. [Google Scholar] [CrossRef]
- Perez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef]
- Zanopol, A.T.; Onea, F.; Rusu, E. Coastal impact assessment of a generic wave farm operating in the Romanian nearshore. Energy 2014, 72, 652–670. [Google Scholar] [CrossRef]
- Zanopol, A.T.; Onea, F.; Rusu, E. Evaluation of the coastal influence of a generic wave farm operating in the Romanian nearshore. J. Environ. Prot. Ecol. 2014, 15, 597–605. [Google Scholar]
- Mendoza, E.; Silva, R.; Zanuttigh, B.; Angelelli, E.; Andersen, T.L.; Martinelli, L.; Nørgaard, J.Q.H.; Ruol, P. Beach response to wave energy converter farms acting as coastal defence. Coast. Eng. 2014, 87, 97–111. [Google Scholar] [CrossRef]
- Kubik, M.L; Coker, P.J; Hunt, C. Using meteorological wind data to estimate turbine generation output: A sensitivity analysis. In Proceedings of the World Renewable Energy Congress—Sweden, Linköping, Sweden, 8–13 May 2011; pp. 4074–4081. [Google Scholar]
- Thoroughly Tested, Utterly Reliable Siemens Wind Turbine SWT-3.6-120. Available online: http://www.energy.siemens.com/ru/pool/hq/power-generation/wind-power/E50001-W310-A169-X-4A00_WS_SWT_3-6_120_US.pdf (accessed on 5 December 2016).
Sea | Point | Latitude | Longitude | Depth (m) | Distance to Shore | |
---|---|---|---|---|---|---|
Proximity Island | (km) | |||||
Ionian | A.1 | 39.63 | 19.71 | 62 | Kerkyra | 2.50 |
A.2 | 38.46 | 20.52 | 79 | Kefallonia | 2.20 | |
A.3 | 38.06 | 20.53 | 62 | Kefallonia | 3.74 | |
A.4 | 37.68 | 20.76 | 86 | Zakynthos | 1.80 | |
A.5 | 36.28 | 22.89 | 77 | Kythira | 1.92 | |
Aegean | B.1 | 39.88 | 25.46 | 60 | Limnos | 8.00 |
B.2 | 38.99 | 26.27 | 67 | Lesvos | 1.67 | |
B.3 | 38.49 | 25.84 | 73 | Cios | 2.41 | |
B.4 | 37.66 | 25.21 | 71 | Tinos | 2.70 | |
B.5 | 37.28 | 24.87 | 98 | Syros | 8.80 | |
B.6 | 37.44 | 26.57 | 90 | Patmos | 5.47 | |
B.7 | 36.89 | 25.25 | 82 | Naxos | 14.00 | |
B.8 | 36.84 | 26.94 | 88 | Kos | 7.00 |
Sea | Point | Latitude | Longitude | Depth (m) | Distance to Shore | |
---|---|---|---|---|---|---|
Proximity Island | (km) | |||||
Crete | C.1 | 36.17 | 23.09 | 92 | Kythira | 3.56 |
C.2 | 36.66 | 24.29 | 63 | Milos | 3.22 | |
C.3 | 36.49 | 26.37 | 96 | Astypalaia | 2.39 | |
C.4 | 36.13 | 27.68 | 89 | Rhodes | 1.93 | |
C.5 | 35.57 | 27.06 | 73 | Karpathos | 1.49 | |
C.6 | 35.34 | 26.31 | 87 | Crete | 2.27 | |
C.7 | 35.48 | 25.22 | 89 | Dia | 1.34 | |
C.8 | 35.71 | 23.73 | 95 | Crete | 2.00 | |
Levantine | D.1 | 36.00 | 27.95 | 98 | Rhodes | 2.98 |
D.2 | 35.35 | 26.95 | 92 | Kasos | 2.14 | |
Libyan | E.1 | 35.01 | 25.95 | 96 | Crete | 2.20 |
E.2 | 34.91 | 24.77 | 95 | Crete | 1.60 | |
E.3 | 35.18 | 24.03 | 71 | Crete | 1.50 |
Siemens SWT 3.6-120 | |||
---|---|---|---|
Operational Data | Rotor | ||
Rated power (MW) | 3.6 | No. of blades | 3 |
Cut-in wind speed (m/s) | 3 | Blade length (m) | 58.5 |
Rated wind speed (m/s) | 12.5 | Rotor diameter (m) | 120 |
Cut-out wind speed (m/s) | 25 | Swept area (m2) | 11,300 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganea, D.; Amortila, V.; Mereuta, E.; Rusu, E. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability 2017, 9, 1025. https://doi.org/10.3390/su9061025
Ganea D, Amortila V, Mereuta E, Rusu E. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability. 2017; 9(6):1025. https://doi.org/10.3390/su9061025
Chicago/Turabian StyleGanea, Daniel, Valentin Amortila, Elena Mereuta, and Eugen Rusu. 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands" Sustainability 9, no. 6: 1025. https://doi.org/10.3390/su9061025
APA StyleGanea, D., Amortila, V., Mereuta, E., & Rusu, E. (2017). A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability, 9(6), 1025. https://doi.org/10.3390/su9061025