Influence of Long Pressure and Short Suction Ventilation Parameters on Air Flow Field and Dust Migration in Driving Face
<p>Long pressure short suction ventilation dust removal experimental platform.</p> "> Figure 2
<p>Variation in wind speed.</p> "> Figure 3
<p>Verification of wind speed and dust concentration along the roadway. (<b>a</b>) Wind velocity. (<b>b</b>) Dust concentration.</p> "> Figure 4
<p>Effect of L on the wind flow field.</p> "> Figure 5
<p>Changes in roadway wind speed along different distances from the air outlet of the pressure duct to the driving surface. (<b>a</b>) Pressure side. (<b>b</b>) Central axis. (<b>c</b>) Extraction side.</p> "> Figure 6
<p>Air flow field along the roadway at different pressure tuyere wind speeds.</p> "> Figure 7
<p>Changes in roadway wind speed along different pressure tuyere wind speeds. (<b>a</b>) Pressure side. (<b>b</b>) Central axis. (<b>c</b>) Extraction side.</p> "> Figure 8
<p>Conditions of air flow field in roadway under different ratios of pumping pressure and air volume.</p> "> Figure 9
<p>Changes in roadway wind speed along the road with different pumping air volume ratios. (<b>a</b>) Pressure side. (<b>b</b>) Central axis. (<b>c</b>) Extraction side.</p> "> Figure 10
<p>Effect of L on particulate matter distribution.</p> "> Figure 11
<p>Influence of L on dust distribution along the roadway. (<b>a</b>) Total dust concentration on the pressure side. (<b>b</b>) Total dust concentration at the central axis. (<b>c</b>) Total dust concentration on the exhaust side. (<b>d</b>) Respirable dust concentration on the pressure side. (<b>e</b>) Respirable dust concentration at the central axis. (<b>f</b>) Respirable dust concentration on the exhaust side.</p> "> Figure 12
<p>Distribution of particulate matter under different pressure wind speeds.</p> "> Figure 13
<p>Influence of V<sub>a</sub> on dust distribution along the roadway. (<b>a</b>) Total dust concentration on the pressure side. (<b>b</b>) Total dust concentration at the central axis. (<b>c</b>) Total dust concentration on the exhaust side. (<b>d</b>) Respirable dust concentration on the pressure side. (<b>e</b>) Respirable dust concentration at the central axis. (<b>f</b>) Respirable dust concentration on the exhaust side.</p> "> Figure 14
<p>Distribution of particulate matter under different pumping air volume ratios.</p> "> Figure 15
<p>Influence of Q on dust distribution along the roadway. (<b>a</b>) Total dust concentration on the pressure side (<b>b</b>) Total dust concentration at the central axis (<b>c</b>) Total dust concentration on the exhaust side (<b>d</b>) Respirable dust concentration on the pressure side (<b>e</b>) Respirable dust concentration at the central axis (<b>f</b>) Respirable dust concentration on the exhaust side.</p> "> Figure 16
<p>Correlation degree of each influencing factor.</p> ">
Abstract
:1. Introduction
2. Model and Method
2.1. Model
2.1.1. Experiment Platform
- (1)
- Equation of motion of gas
- (2)
- Motion equation
2.1.2. Construction of CFD Model
- (1)
- The establishment of geometric models
- (2)
- Grid independence verification
- (3)
- Parameter settings
2.2. Simulation Parameter
3. Results
3.1. Influence of Mixed Ventilation Parameters on Air Flow Field of Roadway
3.1.1. Influence of L on Air Flow Field of Roadway
3.1.2. Influence of Wind Speed at the Outlet of Pressure Duct on Air Flow Field in Roadway
3.1.3. The Influence of Suction Gas Ratio on Air Flow Field in Roadway
3.2. Influence of Mixed Ventilation Parameters on Dust Field of Roadway
3.2.1. Influence of L on Dust Field of Roadway
3.2.2. Influence of Wind Speed at the Outlet of Pressure Duct on Dust Field in Roadway
3.2.3. Influence of Suction Gas Ratio on Dust Field in Roadway
3.3. Grey Correlation Analysis
- (1)
- Initial calculation of sequence: establish matrix
- (2)
- Dimensionless sequence: each dimension represents a different meaning, so processing needs to be dimensionless. Using the range method to process each sequence, a dimensionless matrix is obtained: , k = 1, 2, … 19.
- (3)
- Sequence difference calculation: calculate the absolute difference in the corresponding elements of each comparison sequence and reference sequence one by one, that is, , and obtain the sequence difference matrix , k = 1, 2, … 19.
- (4)
- Calculation of sequence two-stage difference: the maximum value of the sequence difference is , and the minimum value of the sequence difference is .
- (5)
- Calculation of correlation degree coefficient: the grey correlation coefficient matrix is obtained from , where is the resolution coefficient and 0.5 is taken.
- (6)
- Grey correlation calculation: the grey correlation calculation formula is , i = 1, 2, 3; k = 1, 2, … 19. By substituting the data, the correlation degree of total dust concentration at the driver’s position is .
4. Discussion
5. Conclusions
- (1)
- The air flow field under the condition of long pressure and short suction ventilation is divided into return, vortex, and jet zones. The longer the L, the more the wind speed of the jet decreases, resulting in a lower wind speed of the reflux. The position and size of the vortex formed along the roadway are different under different mixed ventilation parameters.
- (2)
- When the distance from the vent to the driving surface of the pressure duct is 1.6 m, the wind speed Va at the outlet of the pressure duct is 8 m/s, and the extraction ratio Q is 0.8, the total dust concentration at the driver and pedestrian is 24.09 mg/m3 and 23.98 mg/m3, respectively. The exhaled dust concentrations were 13.94 mg/m3 and 9.15 mg/m3, respectively. Although the best air flow control scheme under the long pressure and short suction ventilation mode has been determined, the dust concentration at the driver’s position along the driving roadway exceeds the 10 mg/m3 prescribed by the regulations, and other auxiliary dust removal measures such as spray dust removal and chemical dust removal should be taken at the same time.
- (3)
- Through grey correlation analysis, it is found that the factors affecting the total dust concentration at the location of drivers and pedestrians are of the same importance, and the order is L > Va > Q. The order of importance of influencing factors on the concentration of dust at the driver’s position is Va > L > Q.; and the order of importance of influencing factors on the dust concentration at the pedestrian’s position is Va > Q > L. Increasing the air supply volume and shortening the L have a significant effect on accelerating dust discharge.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Explanation |
L | Distance from the vent to the driving surface of the pressure duct, m |
Va | Wind speed at the outlet of the pressure duct, m/s |
Q | Ratio of pumped air volume to pressurized air volume |
Td | Driver’s position total dust concentration, mg/m3 |
Tp | Pedestrian’s position total dust concentration, mg/m3 |
Rd | Driver’s position exhaled dust concentration, mg/m3 |
Rp | Pedestrian’s position exhaled dust concentration, mg/m3 |
Stokes criterion number | |
Homogeneity criterion number | |
Froude criterion number | |
Euler criterion number | |
Reynolds criterion number |
References
- Zheng, H.; Jiang, B.; Zheng, Y.; Zhao, Y.; Wang, H. Experimental study on forced ventilation and dust -control in a heading face based on response surface method. Process Saf. Environ. Prot. 2023, 175, 753–763. [Google Scholar] [CrossRef]
- Jiang, B.; Ji, B.; Yuan, L.; Yu, C.F.; Tao, W.; Zhou, Y.; Wang, H.; Wang, X.H.; Liao, M. Experimental and molecular dynamics simulation study of the ionic liquids’ chain-length on wetting of bituminous coal. Energy 2023, 283, 128507. [Google Scholar] [CrossRef]
- Xie, Z.; Xiao, Y.; Jiang, C.; Ren, Z.; Li, X.; Yu, K. Numerical study on fine dust pollution characteristics under various ventilation time in metro tunnel after blasting. Build. Environ. 2021, 204, 108111. [Google Scholar] [CrossRef]
- Zheng, H.; Shi, S.; Jiang, B.; Zheng, Y.; Li, S.; Wang, H. Research on Coal Dust Wettability Identification Based on GA–BP Model. Int. J. Environ. Res. Public Health 2023, 20, 624. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, G.; Wang, C.; Liu, R.; Miao, Y. Experimental synthesis and performance comparison analysis of high-efficiency wetting enhancers for coal seam water injection. Process Saf. Environ. Prot. 2021, 147, 320–333. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Du, L.; Yang, F.; Zhang, R.; Wei, H.; Wang, G.; Hao, Z. Study on the effect of SDBS and SDS on deep coal seam water injection. Sci. Total Environ. 2023, 856, 158930. [Google Scholar] [CrossRef]
- Zhou, G.; Yao, J.; Wang, Q.; Tian, Y.; Sun, J. Synthesis and properties of wettability-increasing agent with multi-layer composite network structure for coal seam water injection. Process Saf. Environ. Prot. 2023, 172, 341–352. [Google Scholar] [CrossRef]
- Nie, W.; Liu, F.; Xu, C.; Peng, H.; Zhang, H.; Mwabaima, F.I. Study on the optimal parameter range of droplet-wrapped respirable dust in spray dustfall by mesoscopic method. Environ. Res. 2022, 214, 114035. [Google Scholar] [CrossRef]
- Wang, H.; Du, Y.; Wei, X.; He, X. An experimental comparison of the spray performance of typical water-based dust reduction media. Powder Technol. 2019, 345, 580–588. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Du, Y.; Wang, D. Investigation on the atomization characteristics of a solid-cone spray for dust reduction at low and medium pressures. Adv. Powder Technol. 2019, 30, 903–910. [Google Scholar] [CrossRef]
- Yin, S.; Nie, W.; Guo, L.; Liu, Q.; Hua, Y.; Cai, X.; Cheng, L.; Yang, B.; Zhou, W. CFD simulations of air curtain dust removal effect by ventilation parameters during tunneling. Adv. Powder Technol. 2020, 31, 2456–2468. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, S.; Tu, Q.; Shi, G.; Zhu, Y. Study on the distribution characteristics of dust with different particle sizes under forced ventilation in a heading face. Powder Technol. 2022, 406, 117504. [Google Scholar] [CrossRef]
- Zheng, H.; Jiang, B.; Wang, H.; Zheng, Y. Experimental and numerical simulation study on forced ventilation and dust removal of coal mine heading surface. Int. J. Coal Sci. Technol. 2024, 11, 13. [Google Scholar] [CrossRef]
- Nie, W.; Wei, W.; Ma, X.; Liu, Y.; Peng, H.; Liu, Q. The effects of ventilation parameters on the migration behaviors of head-on dusts in the heading face. Tunn. Undergr. Space Technol. 2017, 70, 400–408. [Google Scholar] [CrossRef]
- Nie, W.; Zhang, Y.; Peng, H.; Jiang, B.; Guo, L.; Zhang, X. Research on the optimal parameters of wind curtain dust control technology based on multi factor disturbance conditions. J. Clean. Prod. 2024, 434, 140196. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Liu, Q.; Peng, H.; Wei, W.; Cai, P. The development and application of a novel multi-radial-vortex-based ventilation system for dust removal in a fully mechanized tunnelling face. Tunn. Undergr. Space Technol. 2020, 98, 103253. [Google Scholar] [CrossRef]
- Nie, W.; Sun, N.; Liu, Q.; Guo, L.; Xue, Q.; Liu, C.; Niu, W. Comparative study of dust pollution and air quality of tunnelling anchor integrated machine working face with different ventilation. Tunn. Undergr. Space Technol. 2022, 122, 104377. [Google Scholar] [CrossRef]
- Geng, F.; Luo, G.; Wang, Y.; Peng, Z.; Hu, S.; Zhang, T.; Chai, H. Dust dispersion in a coal roadway driven by a hybrid ventilation system: A numerical study. Process Saf. Environ. Prot. 2018, 113, 388–400. [Google Scholar] [CrossRef]
- Mishra, D.P.; Sahu, A.; Panigrahi, D.C. Design of Auxiliary Ventilation System for Effective Dust Dispersion in Underground Coal Mine Development Heading—A Computational Simulation Approach. In Proceedings of the 11th International Mine Ventilation Congress; Chang, X., Ed.; Springer: Singapore, 2019; pp. 146–158. [Google Scholar]
- Bosikov, I.I.; Klyuev, R.V.; Azhmukhamedov, I.M.; Revazov, V.C. Statistical dynamics-based estimation of ventilation control in coal mines. MIAB. Min. Inf. Anal. Bull. 2021, 11, 123–135. (In Russian) [Google Scholar] [CrossRef]
- Guo, J.; Li, A.; Wang, T.; Gao, R.; Wu, D.; Yin, Y.; Li, J.; Hu, J. Parametric modeling study for blown-dust secondary pollution and optimal ventilation velocity during tunnel construction. Environ. Pollut. 2023, 335, 122239. [Google Scholar] [CrossRef]
- Cai, X.; Nie, W.; Yin, S.; Liu, Q.; Hua, Y.; Guo, L.; Cheng, L.; Ma, Q. An assessment of the dust suppression performance of a hybrid ventilation system during the tunnel excavation process: Numerical simulation. Process Saf. Environ. Prot. 2021, 152, 304–317. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y.; Ghaleb, M.; Liu, G. Study on dust pollution law and ventilation optimization of roadway excavation and shotcrete simultaneous operation. J. Clean. Prod. 2022, 379, 134744. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, S.; Tu, Q.; Xu, X.; Xing, F.; Li, C. Development and experimental study of a scaled model for dust dispersion in fully-mechanized mining face. J. Clean. Prod. 2023, 429, 139576. [Google Scholar] [CrossRef]
- Guo, J.; Li, A.; Gao, R.; Hou, Y.; Wang, T.; Li, J.; Yin, Y.; Che, L. Analysis and comparison of airflow-respirable dust control and innovative ventilation environment in drilling construction tunnels. Atmos. Pollut. Res. 2023, 14, 101908. [Google Scholar] [CrossRef]
- Hou, C.; Yu, H.; Yang, X.; Cheng, W.; Wang, Y.; Ye, Y. Research on dust removal technology of large eddy dust collecting and swirl airflow distribution in the fully-mechanized excavation face. Powder Technol. 2022, 411, 117922. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, W.; Cai, P.; Liu, Y.; Peng, H.; Liu, Q. Pattern characterization concerning spatial and temporal evolution of dust pollution associated with two typical ventilation methods at fully mechanized excavation faces in rock tunnels. Powder Technol. 2018, 334, 117–131. [Google Scholar] [CrossRef]
- Zhou, W.; Nie, W.; Liu, X.; Zhou, C.; Wei, C.; Liu, C.; Liu, Q.; Yin, S. Optimization of dust removal performance of ventilation system in tunnel constructed using shield tunneling machine. Build. Environ. 2020, 173, 106745. [Google Scholar] [CrossRef]
- Liu, C.; Bao, Q.; Nie, W. The influence of ventilation parameters on dust pollution in a tunnel’s environment using the CFD method. J. Wind Eng. Ind. Aerodyn. 2022, 230, 105173. [Google Scholar] [CrossRef]
- Chen, J.S.; Jiang, Z.A. Experimental research on dust distribution and its influencing factors in belt conveyer roadway. J. China Coal Soc. 2014, 39, 135–140. [Google Scholar]
- Ji, B.; Jiang, B.; Yuan, L.; Zhou, Y.; Wang, H.; Tao, W.; Zhang, Y. Effect of side chain functional groups of ionic liquids on improving wettability of coal: Simulation and experimental discussion. Energy 2023, 285, 129453. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, W.; Liu, L.; Hua, Y.; Guo, L.; Nie, W. Research on the control law of dust in the main ventilation system in excavated tunnels for cleaner production. Build. Environ. 2021, 205, 108282. [Google Scholar] [CrossRef]
- Nie, W.; Cai, Y.; Wang, L.; Liu, Q.; Jiang, C.; Hua, Y.; Guo, L.; Cheng, C.; Zhang, H. Study of spatiotemporal evolution of coupled airflow–gas–dust multi-field diffusion at low-gas tunnel. Sci. Total Environ. 2024, 928, 172428. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Cheng, C.; Liu, Q.; Hua, Y.; Jiang, C.; Zhang, H.; Bai, P.; Zhu, Z.; Liu, C. Evolutionary analysis of dust pollution in the comprehensive excavation face based on linear regression method. Powder Technol. 2024, 436, 119476. [Google Scholar] [CrossRef]
- Nie, W.; Zhu, Z.; Liu, Q.; Hua, Y.; Liu, C.; Jiang, C.; Cheng, C.; Zhang, H. Numerical simulation of the dust pollution characteristics and the optimal dustproof air volume in coal washing plant screening workshop. J. Build. Eng. 2024, 87, 109025. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, X.-E.; Wang, Z.-P.; Li, Q.-W.; Deng, J. Diffusion characteristics of coal dust associated with different ventilation methods in underground excavation tunnel. Process Saf. Environ. Prot. 2024, 184, 1177–1191. [Google Scholar] [CrossRef]
- Xie, Z.; Ruan, C.; Zhao, Z.; Huang, C.; Xiao, Y.; Zhao, Q.; Lin, J. Effect of ventilation parameters on dust pollution characteristic of drilling operation in a metro tunnel. Tunn. Undergr. Space Technol. 2023, 132, 104867. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Zhang, H.; Zhong, H. Experimental and numerical study on airflow-dust migration behavior in an underground cavern group construction for cleaner production. Tunn. Undergr. Space Technol. 2024, 144, 105558. [Google Scholar] [CrossRef]
- Zhou, G.; Duan, J.; Sun, B.; Jing, B.; Kong, Y.; Zhang, Y.; Ni, G.; Sun, L. Numerical analysis on pollution law for dust and diesel exhaust particles in multi-ventilation parameter environment of mechanized excavation face. Process Saf. Environ. Prot. 2022, 157, 320–333. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Y.; Liu, Z.; Zhang, Y.; Zhu, Y.; Sun, B.; Ma, Y. Study on the characteristics of compound dust source pollution and foam dust suppression technology in coal mine anchor excavation production. Process Saf. Environ. Prot. 2024, 186, 593–611. [Google Scholar] [CrossRef]
- Nie, W.; Jiang, C.; Liu, Q.; Guo, L.; Hua, Y.; Zhang, H.; Jiang, B.; Zhu, Z. Study of highly efficient control and dust removal system for double-tunnel boring processes in coal mines. Energy 2024, 289, 130081. [Google Scholar] [CrossRef]
- Xiu, Z.; Nie, W.; Cai, P.; Chen, D.; Zhang, X. Partially enclosed air curtain dust control technology to prevent pollution in a fully mechanized mining face. J. Environ. Chem. Eng. 2022, 10, 108326. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, W. Grey correlation analysis of macro- and micro-scale properties of aeolian sand concrete under the salt freezing effect. Structures 2023, 58, 105551. [Google Scholar] [CrossRef]
- Xiu, Z.; Nie, W.; Yan, J.; Chen, D.; Cai, P.; Liu, Q.; Du, T.; Yang, B. Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production. J. Clean. Prod. 2020, 248, 119197. [Google Scholar] [CrossRef]
- Yao, H.; Wang, H.; Li, Y.; Jin, L. Three-dimensional spatial and temporal distributions of dust in roadway tunneling. Int. J. Coal Sci. Technol. 2020, 7, 88–96. [Google Scholar] [CrossRef]
Properties | Value (m) |
---|---|
X | 9 |
Y | 2 |
Z | 2 |
Pressure duct diameter | 0.4 |
Exhaust duct diameter | 0.3 |
Distance from supply vent to face | 0.8–3.2 (Mobile) |
Distance from exhaust vent to face | 0.8 (Stationary) |
Dust-generating surface area | 0.25 × 0.25 |
Name | Parameters | Value |
---|---|---|
General | Type | Pressure-based |
Air | Density | 1.225 kg/m3 |
Viscosity | 1.79 × 10−5 kg/(m·s) | |
Solution | Method | SIMPLEC |
Total time | 160 s | |
Discrete phase | Injection type | Surface |
Material | Coal-hv | |
Diameter distribution | Rosin–Rammler | |
Min. Diameter | 4.05 × 10−7 m | |
Max. Diameter | 9.81 × 10−5 m | |
Mean Diameter | 1.38 × 10−5 m | |
Spread Parameter | 0.855 | |
Number of Diameters | 20 | |
Drag Law | Spherical |
Number | L | Va | Q |
---|---|---|---|
1 | 0.8 | 8 | 0.6 |
2 | 1.2 | 8 | 0.6 |
3 | 1.6 | 8 | 0.6 |
4 | 2.0 | 8 | 0.6 |
5 | 2.4 | 8 | 0.6 |
6 | 2.8 | 8 | 0.6 |
7 | 3.2 | 8 | 0.6 |
8 | 1.6 | 4 | 0.6 |
9 | 1.6 | 6 | 0.6 |
10 | 1.6 | 10 | 0.6 |
11 | 1.6 | 12 | 0.6 |
12 | 1.6 | 14 | 0.6 |
13 | 1.6 | 16 | 0.6 |
14 | 1.6 | 8 | 0.2 |
15 | 1.6 | 8 | 0.3 |
16 | 1.6 | 8 | 0.4 |
17 | 1.6 | 8 | 0.5 |
18 | 1.6 | 8 | 0.7 |
19 | 1.6 | 8 | 0.8 |
L (m) | 0.8 | 1.2 | 1.6 | 2 | 2.4 | 2.8 | 3.2 |
---|---|---|---|---|---|---|---|
Td (mg/m3) | 89.94 | 233.87 | 69.44 | 102.39 | 45.34 | 69.91 | 49.53 |
Tp (mg/m3) | 67.95 | 61.482 | 52.55 | 144.96 | 148.72 | 79.09 | 76.33 |
Rd (mg/m3) | 39.07 | 44.27 | 21.34 | 29.32 | 10.98 | 20.02 | 10.43 |
Rp (mg/m3) | 32.70 | 31.95 | 16.69 | 51.24 | 72.51 | 30.79 | 33.62 |
Va (m/s) | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
---|---|---|---|---|---|---|---|
Td (mg/m3) | 212.41 | 96.57 | 69.44 | 56.08 | 76.04 | 51.73 | 60.54 |
Tp (mg/m3) | 87.81 | 59.61 | 52.55 | 49.27 | 33.87 | 28.12 | 34.69 |
Rd (mg/m3) | 66.87 | 24.31 | 21.34 | 20.58 | 29.34 | 16.40 | 31.48 |
Rp (mg/m3) | 54.36 | 18.54 | 16.69 | 22.90 | 7.45 | 11.72 | 16.24 |
Q | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|---|
Td (mg/m3) | 202.47 | 180.00 | 174.07 | 158.40 | 69.44 | 36.32 | 24.09 |
Tp (mg/m3) | 134.35 | 124.89 | 120.59 | 78.69 | 52.55 | 65.25 | 23.98 |
Rd (mg/m3) | 48.81 | 49.40 | 52.05 | 47.66 | 21.34 | 20.38 | 13.94 |
Rp (mg/m3) | 72.89 | 46.86 | 49.16 | 35.69 | 16.69 | 40.21 | 9.15 |
Number | L (X1) | Va (X2) | Q (X3) | Td (X0) | Tp (X01) | Rd (X02) | Rp (X03) |
---|---|---|---|---|---|---|---|
1 | 0.8 | 8 | 0.6 | 89.94 | 67.95 | 39.07 | 32.70 |
2 | 1.2 | 8 | 0.6 | 233.87 | 61.48 | 44.27 | 31.95 |
3 | 1.6 | 8 | 0.6 | 69.44 | 52.55 | 21.34 | 16.69 |
4 | 2 | 8 | 0.6 | 102.39 | 144.96 | 29.32 | 51.24 |
5 | 2.4 | 8 | 0.6 | 45.34 | 148.72 | 10.98 | 72.51 |
6 | 2.8 | 8 | 0.6 | 69.91 | 79.09 | 20.02 | 30.79 |
7 | 3.2 | 8 | 0.6 | 49.53 | 76.33 | 10.43 | 33.62 |
8 | 1.6 | 4 | 0.6 | 212.41 | 87.81 | 66.87 | 54.36 |
9 | 1.6 | 6 | 0.6 | 96.57 | 59.61 | 24.31 | 18.54 |
10 | 1.6 | 10 | 0.6 | 56.08 | 49.27 | 20.58 | 22.90 |
11 | 1.6 | 12 | 0.6 | 76.04 | 33.87 | 29.34 | 7.45 |
12 | 1.6 | 14 | 0.6 | 51.73 | 28.12 | 16.40 | 11.72 |
13 | 1.6 | 16 | 0.6 | 60.54 | 34.69 | 31.48 | 16.24 |
14 | 1.6 | 8 | 0.2 | 202.47 | 134.35 | 48.81 | 72.89 |
15 | 1.6 | 8 | 0.3 | 180.00 | 124.89 | 49.40 | 46.86 |
16 | 1.6 | 8 | 0.4 | 174.07 | 120.59 | 52.05 | 49.16 |
17 | 1.6 | 8 | 0.5 | 158.40 | 78.69 | 47.66 | 35.69 |
18 | 1.6 | 8 | 0.7 | 36.32 | 65.25 | 20.38 | 40.21 |
19 | 1.6 | 8 | 0.8 | 24.09 | 23.98 | 13.94 | 9.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Ren, B.; Yu, G. Influence of Long Pressure and Short Suction Ventilation Parameters on Air Flow Field and Dust Migration in Driving Face. Sustainability 2024, 16, 7786. https://doi.org/10.3390/su16177786
Zheng Y, Ren B, Yu G. Influence of Long Pressure and Short Suction Ventilation Parameters on Air Flow Field and Dust Migration in Driving Face. Sustainability. 2024; 16(17):7786. https://doi.org/10.3390/su16177786
Chicago/Turabian StyleZheng, Yuannan, Bo Ren, and Guofeng Yu. 2024. "Influence of Long Pressure and Short Suction Ventilation Parameters on Air Flow Field and Dust Migration in Driving Face" Sustainability 16, no. 17: 7786. https://doi.org/10.3390/su16177786