Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS)
<p>Overview of the three possible process configurations.</p> "> Figure 2
<p>Calibration curves for caffeine, theobromine, epicatechin, catechin and gallic acid equivalents (GAE).</p> "> Figure 3
<p>Yields for dry residue, methylxanthines and polyphenols in solvent screening with aqueous ethanol and organic solvents.</p> "> Figure 4
<p>Yields for dry residue, methylxanthines and polyphenols in temperature screening.</p> "> Figure 5
<p>Partition coefficients for solvent screening for liquid–liquid extraction.</p> "> Figure 6
<p>Yields and purities for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>) in DoE with phase ratio and pH value including ethyl acetate and butyl acetate as reference.</p> "> Figure 6 Cont.
<p>Yields and purities for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>) in DoE with phase ratio and pH value including ethyl acetate and butyl acetate as reference.</p> "> Figure 7
<p>Influence of pH and phase ratio on yield for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 7 Cont.
<p>Influence of pH and phase ratio on yield for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 7 Cont.
<p>Influence of pH and phase ratio on yield for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 8
<p>Influence of pH and phase ratio on purity for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 8 Cont.
<p>Influence of pH and phase ratio on purity for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 8 Cont.
<p>Influence of pH and phase ratio on purity for total phenolic content (<b>a</b>,<b>b</b>), theobromine (<b>c</b>,<b>d</b>), caffeine (<b>e</b>,<b>f</b>), catechin (<b>g</b>,<b>h</b>) and epicatechin (<b>i</b>,<b>j</b>).</p> "> Figure 9
<p>Overview of the novel process for the recovery of phenolic compounds from natural product extracts.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction Setup
2.2. Liquid–Liquid Extraction
2.3. Analytics
2.4. Statistical Analysis
2.5. Calculations
3. Results
3.1. Characterization of Solid–Liquid Extraction
3.2. Characterization of Liquid–Liquid Extraction
- -
- Directly after extraction of the glycan–phenol mixture.
- -
- After precipitation of the glycans with ethanol—an ethanol–water mixture is then present.
- -
- After evaporation of the ethanol from the precipitation supernatant.
4. Discussion
5. Conclusions
- The novel process reaches very high yields of up to 100% in one extraction stage.
- The novel process ensures low consumption of organic solvents due to double usage of ethanol as the only organic solvent.
- The process is adaptable enough to capture all kinds of secondary metabolites from hot water extracts and ensures usage of structural carbohydrates from precipitation. Ethanol is well-known as a precipitant for matrix components from hot water extracts. The ethanol content in the light phase is adaptable enough to match the solubility properties of the target component, usually between 50 and 80% ethanol [8,14].
- Follow-up studies will focus on process optimization, research on process analytical technology and complete dry residue characterization by component groups [13].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borges, A.; Abreu, A.; Dias, C.; Saavedra, M.; Borges, F.; Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef] [PubMed]
- Leonel, M.; Sarmento, S.B.S.; Cereda, M.P. New starches for the food industry: Curcuma longa and Curcuma zedoaria. Carbohydr. Polym. 2003, 54, 385–388. [Google Scholar] [CrossRef]
- Cardinali, A. Phytochemicals from artichoke by-product and their applications as natural ingredients for cosmetic industry. In Green Extraction of Natural Products; University of Bari: Bari, Italy, 2018. [Google Scholar]
- Kleeberg, H. Method for the Production of Storage Stable Azadirachtin from Seed Kernels of the Neem Tree. U.S. Patent 5,695,763, 12 October 1997. [Google Scholar]
- Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie. Positionspapier zu Bioplastik. 2018. Available online: https://www.iwks.fraunhofer.de/de/presse-und-medien/pressemeldungen-2018/positionspapier-zu-bioplastik.html (accessed on 3 December 2018).
- Willner, T.; Sievers, A. Fortschrittliche Alternative Flüssig Brenn- und Kraftstoffe: Für Klimaschutz im Globalen Rohstoffwandel; HAW Hamburg: Hamburg, Germany, 2017. [Google Scholar]
- Technische Universität Dresden. Bundesministerium für bildung und forschung. In Nationale Forschungsstrategie BioÖkonomie 2030; Technische Universität Dresden: Dresden, Germany, 2010. [Google Scholar]
- Sixt, M. Methoden zur Systematischen Gesamtprozessentwicklung und Prozessintensivierung von Extraktions- und Trennprozessen zur Gewinnung Pflanzlicher Wertkomponenten; Shaker Verlag: Aachen, Germany, 2018; ISBN 978-3-8440-6169-7. [Google Scholar]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Jadeja, G.C.; Maheshwari, R.C.; Naik, S.N. Extraction of natural insecticide azadirachtin from neem (Azadirachta indica A. Juss) seed kernels using pressurized hot solvent. J. Supercrit. Fluids 2011, 56, 253–258. [Google Scholar] [CrossRef]
- Plaza, M.; Marina, M.L. Pressurized hot water extraction of bioactives. TrAC Trends Anal. Chem. 2019, 116, 236–247. [Google Scholar] [CrossRef]
- Schmidt, A.; Uhlenbrock, L.; Strube, J. Technical Potential for Energy and GWP Reduction in Chemical–Pharmaceutical Industry in Germany and EU—Focused on Biologics and Botanicals Manufacturing. Processes 2020, 8, 818. [Google Scholar] [CrossRef]
- Jensch, C.; Knierim, L.; Tegtmeier, M.; Strube, J. Development of a General PAT Strategy for Online Monitoring of Complex Mixtures—On the Example of Natural Product Extracts from Bearberry Leaf (Arctostaphylos uva-ursi). Processes 2021, 9, 2129. [Google Scholar] [CrossRef]
- Sixt, M.; Schmidt, A.; Mestmäcker, F.; Huter, M.; Uhlenbrock, L.; Strube, J. Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.—Part I: Conceptual Process Design and Cost Estimation. Processes 2018, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Strube, J. Application and Fundamentals of Liquid-Liquid Extraction Processes: Purification of Biologicals, Botanicals, and Strategic Metals. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 16, pp. 1–52. [Google Scholar] [CrossRef]
- Schmidt, A.; Strube, J. Distinct and Quantitative Validation Method for Predictive Process Modeling with Examples of Liquid-Liquid Extraction Processes of Complex Feed Mixtures. Processes 2019, 7, 298. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Richter, M.; Rudolph, F.; Strube, J. Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies. Antibodies 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Santana, N.B.; Dias, J.C.T.; Rezende, R.P.; Franco, M.; Oliveira, L.K.S.; Souza, L.O. Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE 2018, 13, e0195206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panak Balentić, J.; Ačkar, Đ.; Jokić, S.; Jozinović, A.; Babić, J.; Miličević, B.; Šubarić, D.; Pavlović, N. Cocoa Shell: A By-Product with Great Potential for Wide Application. Molecules 2018, 23, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef]
- Bonvehi, J.S.; Jordà, R.E. Constitutents of cocoa husks; Zeitschrift für Naturforschung: Tübingen, Germany, 1998. [Google Scholar]
- Plaza, M.; Oliveira, D.; Nilsson, A.; Turner, C. Green and Efficient Extraction Method to Determine Polyphenols in Cocoa and Cocoa Products. Food Anal. Methods 2017, 10, 2677–2691. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, N.; Jokić, S.; Jakovljević, M.; Blažić, M.; Molnar, M. Green Extraction Methods for Active Compounds from Food Waste-Cocoa Bean Shell. Foods 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Jokić, S.; Gagić, T.; Knez, Ž.; Šubarić, D.; Škerget, M. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules 2018, 23, 1408. [Google Scholar] [CrossRef] [Green Version]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, A.G. Effects of Particle Size and Extraction Methods on Cocoa Bean Shell Functional Beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef] [Green Version]
- Siow, C.S.; Chan, E.W.C.; Wong, C.W.; Ng, C.W. Antioxidant and sensory evaluation of cocoa (Theobroma cacao L.) tea formulated with cocoa bean hull of different origins. Future Foods 2022, 5, 100108. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Rozzamri, A.; Hussain, N. Composition, color and antioxidant properties of cocoa shell at different roasting temperatures. Food Res. 2019, 4, 585–593. [Google Scholar] [CrossRef]
- Barišić, V.; Jozinović, A.; Flanjak, I.; Šubarić, D.; Babić, J.; Miličević, B.; Doko, K.; Ačkar, Đ. Difficulties with Use of Cocoa Bean Shell in Food Production and High Voltage Electrical Discharge as a Possible Solution. Sustainability 2020, 12, 3981. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa shell and its compounds: Applications in the food industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Ouattara, L.Y.; Kouassi, E.K.A.; Soro, D.; Soro, Y.; Yao, K.B.; Adouby, K.; Drogui, A.P.; Tyagi, D.R.; Aina, P.M. Cocoa pod husks as potential sources of renewable high-value-added products: A review of current valorizations and future prospects. BioRes 2020, 16, 1988–2020. [Google Scholar] [CrossRef]
- Uhlenbrock, L.; Sixt, M.; Tegtmeier, M.; Schulz, H.; Hagels, H.; Ditz, R.; Strube, J. Natural Products Extraction of the Future—Sustainable Manufacturing Solutions for Societal Needs. Processes 2018, 6, 177. [Google Scholar] [CrossRef] [Green Version]
- Uhlenbrock, L.; Ditz, R.; Strube, J. Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules 2019, 24, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensch, C.; Schmidt, A.; Strube, J. Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). Sustainability 2022, 14, 3126. https://doi.org/10.3390/su14053126
Jensch C, Schmidt A, Strube J. Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). Sustainability. 2022; 14(5):3126. https://doi.org/10.3390/su14053126
Chicago/Turabian StyleJensch, Christoph, Axel Schmidt, and Jochen Strube. 2022. "Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS)" Sustainability 14, no. 5: 3126. https://doi.org/10.3390/su14053126
APA StyleJensch, C., Schmidt, A., & Strube, J. (2022). Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). Sustainability, 14(5), 3126. https://doi.org/10.3390/su14053126