Land Degraded by Gold Mining in the Ecuadorian Amazon: A Proposal for Boosting Ecosystem Restoration Through Induced Revegetation
<p>Geographic location and layout of the experimental site for revegetation in the Naranjalito sector, Napo province, Ecuador. The study area covers approximately 0.5 hectares along the Jatunyacu River and is divided into four experimental blocks (A, B, C, and D), each with treatment plots (T1, T2, T3, and T4) designated for different biocompost dosages and controls. Insets show the location of the Napo province within Ecuador and South America.</p> "> Figure 2
<p>Revegetation methods applied to 0.5 ha of degraded soil: overview of nine sequential stages.</p> "> Figure 3
<p>Experimental design showing four blocks and 16 plots (300 m<sup>2</sup> each) with the distribution of Ochroma pyramidale and Arachis pintoi plants.</p> "> Figure 4
<p>Soil geochemical analysis showing elemental concentrations of 13 elements that exceed the maximum permissible limits (indicated by the red lines) according to Ecuadorian environmental standards.</p> "> Figure 5
<p>Evolution of organic matter in plots before and after treatment with plant biocompost.</p> "> Figure 6
<p>Temporal analysis of dasometric parameters in <span class="html-italic">Ochroma pyramidale</span> over a 6-month period, including basal area (<b>A</b>), height (<b>B</b>), stem volume (<b>C</b>), crown diameter (<b>D</b>), and number of leaves (<b>E</b>), with data recorded at three different time points.</p> "> Figure 7
<p>Biplot representation of the <span class="html-italic">Ochroma pyramidale</span> dasometric variables using the treatments and blocks as illustrative variables with records at 15 days, 90 days, and 180 days.</p> "> Figure 8
<p>Survival rate of <span class="html-italic">Ochroma pyramidale</span> according to generalized linear model where significant differences are observed between treatments.</p> "> Figure 9
<p>(<b>A</b>) Percentage of <span class="html-italic">Arachis pintoi</span> ground cover by plot. (<b>B</b>) Percentage of <span class="html-italic">Arachis pintoi</span> ground cover achieved by treatments over a 6-month period.</p> "> Figure 10
<p>Dry mass of <span class="html-italic">Ochroma pyramidale</span> after 3 months of planting according to vegetative tissue (<b>A</b>) and treatments (<b>B</b>).</p> "> Figure 11
<p>Dry mass biomass data of <span class="html-italic">Arachis pintoi</span> according to plots (<b>A</b>) and treatments (<b>B</b>) in a period of 3 months.</p> "> Figure 12
<p>Q–Q plot to evaluate the normality of the transformed residuals.</p> "> Figure 13
<p>Orthophoto images with the vegetation cover reached after 6 months (<b>A</b>). Remote sensing images with vegetation cover RGB (3.45 cm/pixel) in 6 months (<b>B</b>).</p> "> Figure 14
<p>(<b>A</b>) Vegetation coverage surface (m<sup>2</sup>) according to treatments and blocks. (<b>B</b>) Vegetative cover in the plots after 6 months of study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and Characteristics
2.1.2. Mining Area
2.2. Experimental Design
Treatments and Controls
2.3. Soil and Vegetation Analysis
2.3.1. Soil Physical Chemical Analysis
2.3.2. Temporary Forest Nursery
2.3.3. Organic Waste Processing
2.3.4. Preparation of Plant Biocompost and Biochar
2.3.5. Physicochemical and Microbiological Properties of Biocompost
2.3.6. Ochroma pyramidale and Arachis pintoi Plantations
2.3.7. Post-Planting Management
2.4. Temporal Assessment Records of Dasometric Variables in Ochroma pyramidale
2.4.1. Evaluation of Dasometric Variables in Ochroma pyramidale
2.4.2. Evaluation of Vegetative Cover in Arachis pintoi
2.4.3. Biomass Analysis: Dry Mass of Ochroma pyramidale and Arachis pintoi
2.4.4. Analysis of Vegetative Cover Using Aerial Imagery
2.5. Statistical Analysis
2.5.1. Temporal Multivariate Analysis
2.5.2. Vegetative Cover Analysis
2.5.3. Statistical Model Used
2.5.4. Survival and Mortality Analysis of Ochroma pyramidale
3. Results
3.1. Heavy Metal Contamination
3.2. Physicochemical and Microbiological Analysis of Biocompost
3.3. Physicochemical Analysis of Soil
3.4. Analysis of the Temporal Evolution of the Dasometric Variables of Ochroma pyramidale
3.5. Survival and Mortality Rate of Ochroma pyramidale
3.6. Dry Mass of Ochroma pyramidale and Arachis pintoi Biomass
3.7. Vegetation Cover Study
3.7.1. ANOVA Analysis
3.7.2. Aerial Images and Supervised Classification Techniques Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez Salinas, E.S.; Ortiz Hernández, M.L. Narraciones de La Ciencia y La Tecnología: Escenarios Ambientales y Sociales de La Minería a Cielo Abierto. Inventio 2014, 10, 27–34. [Google Scholar]
- Bravo Velasquez, M.E. La Biodiversidad En El Ecuador; Universidad Politécnica Salesiana: Quito, Ecuador, 2014; Available online: https://dspace.ups.edu.ec/bitstream/123456789/6788/1/La%20Biodiversidad.pdf (accessed on 7 January 2025).
- Herrera-Feijoo, R.J. Principales Amenazas e Iniciativas de Conservación de La Biodiversidad En Ecuador. J. Econ. Soc. Sci. Res. 2024, 4, 33–56. [Google Scholar] [CrossRef]
- Alvarado, A.C. Oil Palm and Balsa Plantations Trigger Deforestation in Ecuadorian Amazon. August 2023. Available online: https://news.mongabay.com/2023/08/oil-palm-and-balsa-plantations-trigger-deforestation-in-ecuadorian-amazon/ (accessed on 7 January 2025).
- Monitoring of the Andes Amazon Program. MAAP #198: Expansión de La Minería En La Amazonía de Ecuador. 11 October 2023. Available online: https://www.maapprogram.org/es/expansion-mineria-ecuador/ (accessed on 7 January 2025).
- Monitoring of the Andes Amazon Program. MAAP #184: Avance de La Actividad Minera En La Provincia de Napo (Ecuador). Maaproject. 21 March 2023. Available online: https://www.maapprogram.org/es/mineria-napo-ecuador-2/ (accessed on 6 January 2025).
- Eguiguren, P.; Fischer, R.; Günter, S. Degradation of Ecosystem Services and Deforestation in Landscapes With and Without Incentive-Based Forest Conservation in the Ecuadorian Amazon. Forests 2019, 10, 442. [Google Scholar] [CrossRef]
- Salinas, E.S.; Ortiz Hernández, M.L. Escenarios Ambientales y Sociales de La Minería a Cielo Abierto. 2014. Available online: https://dialnet.unirioja.es/descarga/articulo/4733822.pdf (accessed on 7 January 2025).
- Acosta, A.; Cajas, J.; Hurtado, H.; Sacher, W. El Festín Minero Del Siglo XXI: ¿Del Ocaso Petrolero a Una Pandemia Megaminera? 1st ed.; Serie Debate Constituyente en el Ecuador y América Latina; Vol. 1; ABYAYALA: Quito, Ecuador, 2020; ISBN 978-9942-09-714-9. [Google Scholar]
- Poulin, J.; Gibb, H. Mercurio Evaluación de La Carga de Morbilidad Ambiental a Nivel Nacional y Local. Organización Mundial de la Salud 2008. Available online: https://iris.who.int/handle/10665/78130 (accessed on 7 November 2024).
- Galarza, E.; Cabrera, M.; Espinosa, R.; Espitia, E.; Moulatlet, G.M.; Capparelli, M.V. Assessing the Quality of Amazon Aquatic Ecosystems with Multiple Lines of Evidence: The Case of the Northeast Andean Foothills of Ecuador. Bull Envrion. Contam Toxicol 2021, 107, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Vellosa, M.; Cabrera, M.; Massaine, G.; Pinos, V.; Pérez, A.; Lucas, O.; Galarza, E.; Alvear, A.; Shiguango, L.; Cevallos, M.; et al. Evaluación Del Grado de Afectación de La Actividad Minera Sobre Los Ecosistemas Acuáticos En La Provincia Del Napo; Ikiam University: Tena, Ecuador, 2021; Available online: https://ninaosorio.com/wp-content/uploads/2023/05/INFORME_MINERIA_IKIAM.pdf (accessed on 7 January 2025).
- Capparelli, M.V.; Cabrera, M.; Rico, A.; Lucas-Solis, O.; Alvear, D.; Vasco, S.; Galarza, E.; Shiguango, L.; Pinos, V.; Pérez, A.; et al. An Integrative Approach to Assess the Environmental Impacts of Gold Mining Contamination in the Amazon. Toxics 2021, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Soliz, F.; Durango, J.; Solano, J.; Yépez, M. Cartografía de Los Residuos Sólidos En Ecuador, 2020; Universidad Andina Simón Bolívar: Sucre, Bolivia, 2020; p. 185. Available online: http://repositorio.uasb.edu.ec/handle/10644/7773 (accessed on 7 January 2025).
- Carrera, J.; Vargas, G. Revisión Documental de Los Sistemas de Producción, Propiedades Nutricionales y Su Aplicación Agroindustrial de Algas Comestibles; Universidad Estatal Amazónica: Puyo, Ecuador, 2021; pp. 43–76. Available online: https://repositorio.uea.edu.ec/handle/123456789/1268 (accessed on 7 January 2025).
- Serna Mendoza, C.A.; Serna Giraldo, D.S. Residuos Sólidos y Cambio Climático. Rev. Del Inst. Investig. La Fac. Minas Metal. Cienc. Geográficas 2022, 25, 393–399. [Google Scholar] [CrossRef]
- Nuñez, W.E.; Sotomayor, D.A.; Ballardo, C.V.; Herrera, E. Fungal Biomass Potential: Production and Bioremediation Mechanisms of Heavy Metals from Municipal Organic Solid Waste Compost. Sci. Agropecu. 2023, 14, 79–91. [Google Scholar] [CrossRef]
- de Lima, A.; Rojas Ramírez, M.V.; Méndez Ramírez, J.L.; Salazar Céspedes, K.; Salmerón Alpízar, A.L. Servicios Ecosistémicos de Regulación Que Benefician a La Sociedad y Su Relación Con La Restauración Ecológica. Biocenosis 2017, 31, 5–10. [Google Scholar]
- Matías-Ramos, M.; Hidalgo-Moreno, C.I.; Fuentes-Ponce, M.; Delgadillo-Martínez, J.; Etchevers, J.D. Potencial de Especies de Leguminosas Mejoradoras de La Fertilidad Del Suelo En Regiones Tropicales. Rev. Mex. Cienc. Agric. 2023, 14, 531–541. [Google Scholar] [CrossRef]
- Castillo Giraldo, A.P. Sistemas Tecnológicos Alternativos Para La Protección Vegetal En Taludes; Universidad Nacional de Colombia Sede Medellín: Medellin, Colombia, 2017; Available online: https://repositorio.unal.edu.co/handle/unal/60101 (accessed on 7 January 2025).
- Millán, R.; Carpena, R.O.; Schmid, T.; Sierra, M.J.; Moreno, E.; Peñalosa, J. Rehabilitación de Suelos Contaminados Con Mercurio: Estrategias Aplicables En El Área de Almadén. Ecosistemas. 2007. Available online: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/130 (accessed on 7 January 2025).
- Iskandar, A. Remediation of Soils Contaminated with Metals—A Review of Current Practices in the USA. Cold Reg. Res. Eng. Lab. 1993, 1, 1–25. [Google Scholar]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J. Phytoremediation of Soil Metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Feijoo, R.J. Explorando El Futuro Sostenible de La Balsa (Ochroma pyramidale) En La Amazonía Ecuatoriana: Modelado Del Nicho Ecológico Para La Rehabilitación de Áreas Degradadas. Código Científico Rev. Investig. 2023, 4, 825–845. [Google Scholar] [CrossRef]
- Zamora-Morales, B.P.; Mendoza-Cariño, M.; Sangerman-Jarquín, D.M.; Navarro Bravo, A.; Quevedo Nolasco, A. La Investigación Científica En México: Secuestro de Carbono Orgánico En Suelos Agrícolas y de Agostadero. Rev. Mex. Cienc. Agric. 2019, 10, 155–164. [Google Scholar] [CrossRef]
- Meli, P.; Ruiz, L.; Aguilar, R.; Rabasa, A.; Rey Benayas, J.M.; Carabias, J. Bosques Ribereños Del Trópico Húmedo de México: Un Caso de Estudio y Aspectos Críticos Para Una Restauración Exitosa. Madera Bosques 2017, 23, 181–193. [Google Scholar] [CrossRef]
- Aguirre, P.M.; Muñoz, R.M. Biodiversidad, Conocimiento Local y Cambio Climático En La Región Andino-Amazónica: Muchos Desafíos Un Solo Objetivo; Universidad Técnica del Norte: Ibarra, Ecuador, 2014; pp. 23–48. Available online: https://repositorio.utn.edu.ec/handle/123456789/3728 (accessed on 13 January 2025).
- Douterlungne, D.; Herrera-Gorocica, A.M.; Ferguson, B.G.; Siddique, I.; Soto-Pinto, L. Allometric Equations Used to Estimate Biomass and Carbon in Four Neotropical Tree Species with Restoration Potential. Agrociencia 2013, 47, 385–397. [Google Scholar]
- Cañadas-López, Á.; Rade-Loor, D.; Siegmund-Schultze, M.; Moreira-Muñoz, G.; Vargas-Hernández, J.J.; Wehenkel, C. Growth and Yield Models for Balsa Wood Plantations in the Coastal Lowlands of Ecuador. Forests 2019, 10, 733. [Google Scholar] [CrossRef]
- Piotto, D.; Craven, D.; Montagnini, F.; Alice, F. Silvicultural and Economic Aspects of Pure and Mixed Native Tree Species Plantations on Degraded Pasturelands in Humid Costa Rica. New 2010, 39, 369–385. [Google Scholar] [CrossRef]
- Pagano, M.C.; Cabello, M.N. Mycorrhizal Interactions for Reforestation: Constraints to Dryland Agroforest in Brazil. Int. Sch. Res. Netw. ISRN Ecol. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Pérez-Suárez, M.; Arredondo-Moreno, J.T.; Huber-Sannwald, E.; Serna-Pérez, A. Forest Structure, Species Traits and Rain Characteristics Influences on Horizontal and Vertical Rainfall Partitioning in a Semiarid Pine–Oak Forest from Central Mexico. Ecohydrology 2014, 7, 532–543. [Google Scholar] [CrossRef]
- Ndona, R.K.; Friedel, J.K.; Spornberger, A.; Rinnofner, T.; Jezik, K. ‘Effective Micro-Organisms’ (EM): An Effective Plant Strengthening Agent for Tomatoes in Protected Cultivation. Biol. Agric. Hortic. 2011, 27, 189–203. [Google Scholar] [CrossRef]
- Boga, C.; Del Vecchio, E.; Forlani, L.; Franceschetti, M. Microbes to Clean Indoor Pollutants. Environ. Chem. Lett. 2014, 12, 429–434. [Google Scholar] [CrossRef]
- Wang, D.; Fonte, S.J.; Parikh, S.J.; Six, J.; Scow, K.M. Biochar Additions Can Enhance Soil Structure and the Physical Stabilization of C in Aggregates. Geoderma 2017, 303, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Veeraraghavan, A.; Raskar, R.; Agrawal, A.; Mohan, A.; Tumblin, J. Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing. ACM Trans. Graph. 2007, 26, 69. [Google Scholar] [CrossRef]
- Mata, Á.O.M.; Coronel, C.R.J.; Torres, F.G.C.T. Ministerio Del Ambiente Programa Nacional de Reforestación Con Fines de Conservación Ambiental, Protección de Cuencas Hidrográficas y Beneficios Alternos; Ministerio del Ambiente: Quito, Ecuador, 2019; Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/07/9.REFORESTACION.pdf (accessed on 13 January 2025).
- Pidal, J. Aproximación Hidrodinámica a Las Crecidas Repentinas En La Ciudad de Tena (Ecuador). XXVIII Congreso Latinoamericano de Hidráulica Buenos Aires. 2018. Available online: https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_53.pdf (accessed on 7 November 2024).
- Alvarado, S.; Cordova, J.; Lopez, F.; Valverde, F.; Moscoso, I.; Nicolalde, J. Metodologías de Análisis Físico-Químico de Suelos, Tejido Vegetal y Aguas. INIAP 2009, pp 4–69.
- Acuerdo Ministerial 97. Reforma Texto Unificado Legislación, Medio Ambiente, Libro VI, Decreto. 2015. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-61.pdf (accessed on 6 November 2024).
- Vinueza, M. Ficha Técnica No 7: BALSA; Ecuador Forestal: Guayaquil, Ecuador, 2012; Available online: https://ecuadorforestal.org/fichas-tecnicas-de-especies-forestales/ficha-tecnica-no-7-balsa/ (accessed on 13 January 2025).
- Román, P.; Martínez, M.; Pantoja, A. Manual de Compostaje Del Agricultor: Experiencias En América Latina; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Roma, Italy, 2013. [Google Scholar]
- Kondo, S. Microorganismos Guía Técnica 4. Proyecto para el Apoyo a Pequeños Agricultores en la Zona Oriental 2000. Available online: https://www.jica.go.jp/Resource/project/elsalvador/0603028/pdf/production/vegetable_04.pdf (accessed on 13 January 2025).
- French, E.; Hebert, T. Métodos de Investigación Fitopatológica, 2nd ed.; Instituto Interamericano de Ciencias Agrícolas: San José, Costa Rica, 1980. [Google Scholar]
- Gond, S.K.; Verma, V.C.; Kumar, A.; Kumar, V.; Kharwar, R.N. Study of Endophytic Fungal Community from Different Parts of Aegle Marmelos Correae (Rutaceae) from Varanasi (India). World J. Microbiol. Biotechnol. 2007, 23, 1371–1375. [Google Scholar] [CrossRef]
- Rivas, J.; Yunda, R.; Tamayo, V.; Martínez, R. Análisis Del Sistema de Explotación de La Balsa y Sus Impactos Socioeconómicos y Ambientales En Territorios Indígenas de Amazonía. WWF. 2022. Available online: https://wwflac.awsassets.panda.org/downloads/analisis_explotacion_balsa.pdf (accessed on 13 January 2025).
- Valentinuzzi, M. Análisis Por Fluorescencia de Rayos X: Implementación de Guías de Haces En Reflexión Total; Universidad Nacional de Córdoba: Córdoba, Argentina, 2008; Available online: https://www.famaf.unc.edu.ar/documents/1019/DFis130.pdf (accessed on 13 January 2025).
- INCAP. Ecotecnologías Para La Seguridad Alimentaria y Nutricional: Recetas Para El Control de Insectos—Manual 8; Instituto de Nutrición de Centro America y Panama INCAP: Guatemala City, Guatemala, 2006; Available online: https://www.sica.int/busqueda/busqueda_archivo.aspx?Archivo=medu_94769_2_02062015.pdf (accessed on 6 November 2024).
- Mendoza, G.L.; Marín, E.I.; Padilla, X.; Juan, B.; Narváez, R. Manual de Buenas Prácticas En Plantaciones Forestales Comerciales; Ministerio de Agricultura: Madrid, España, 2023; Available online: https://www.proamazonia.org/wp-content/uploads/2023/09/Manual-plantaciones-sep.pdf (accessed on 7 November 2024).
- Rincón, A.; Cuesta, P.; Pérez, R.; Lascano, C.; Ferguson, J. Maní Forrajero Perenne: Una Alternativa Para Ganaderos y Agricultores; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 2000; Available online: http://ciat-library.ciat.cgiar.org/forrajes_tropicales/pdf/Leaflets/arachis_colombia.pdf (accessed on 13 January 2025).
- Mostacedo, B.; Fredericksen, T. Manual de Métodos Básicos de Muestreo y Análisis En Ecología Vegetal, 6th ed.; Nash, D., Ed.; Editora El País: Madrid, España, 2000. [Google Scholar]
- Saldarriaga-Loaiza, J.D.; Villada, F.; Pérez, J.F. Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración Usando Biomasa Forestal En El Departamento de Antioquia, Colombia. Inf. Tecnológica 2019, 30, 63–74. [Google Scholar] [CrossRef]
- Hernández García, J.; Rodríguez Ortíz, G.; del Valle, J.R.; Campos Ángeles, G.V.; Hernández Hernández, A. Biomasa Arbustiva, Herbácea y En El Piso Forestal Como Factor de Riesgo de Incendios. Rev. Mex. Cienc. 2016, 7, 51–63. [Google Scholar]
- Chico, V. Potencial Bioacumulador de Metales Pesados En Tres Especies Forestales En Un Área de Extracción Minera, Yutzupino—Provincia de Napo; Universidad Estatal Amazónica (UEA): Puyo, Ecuador, 2023; Available online: https://repositorio.uea.edu.ec/bitstream/123456789/1051/1/Tesis%20Silvicultura%20Viviana%20Chico.pdf (accessed on 13 January 2025).
- Achicanoy, J.A. Lineamientos Metodológicos Para La Detección, Análisis y Proyección de Las Coberturas Vegetales Mediante El Uso de Sensores Remotos y Sistemas de Información Geográfica; Universidad Nacional de Colombia: Bogota, Colombia, 2017; Available online: https://repositorio.unal.edu.co/handle/unal/59833 (accessed on 13 January 2025).
- Aguilar, M. Aprovechamiento de Los Desechos Orgánicos En La Elaboración de Compost Mediante La Implementación de Un Sistema Mecánico Amigable Con El Ambiente; Universidad Agraria del Ecuador: Guayaquil, Ecuador, 2020; Available online: https://cia.uagraria.edu.ec/Archivos/AGUILAR%20CAMBA%20MIGUEL%20ANGEL.pdf (accessed on 6 November 2024).
- Soto Rey, M. Catálogo de Especies Herbáceas y Leñosas Bajas Autóctonas Para La Revegetación de Zonas Degradadas En La Rioja; Gobierno de La Rioja: Logroño, Spain, 2003; Available online: https://floramontiberica.wordpress.com/wp-content/uploads/2016/01/revegetacion_la_rioja_2002.pdf (accessed on 13 January 2025).
Treatments | Plot/Area m2 | Ochroma pyramidale | Ochroma pyramidale | Arachis pintoi | Arachis pintoi | Total Plants/Treatment |
---|---|---|---|---|---|---|
Plants/Plot | Plants/Treatment | Plants/Plot | Plants/Treatment | |||
T1 | 300 | 20 | 20 × 4 = 80 | 80 | 160 × 4 = 640 | 720 |
T2 | 300 | 0 | 0 | 0 | 0 | 0 |
T3 | 300 | 20 | 20 × 4 = 80 | 80 | 160 × 4 = 640 | 720 |
T4 | 300 | 20 | 20 × 4 = 80 | 80 | 160 × 4 = 640 | 720 |
Total Plants | 240 | - | 1920 | 2160 |
Treatments | Biol | Biol | Biocompost | Biocompost | Biocompost | |
---|---|---|---|---|---|---|
L/Plot | L/Treatments | Kg/Plant Ochroma piramidale | Kg/Plant Arachis pintoi | Kg/Treatments | t/ha | |
T1 | 25 | 100 | 6.1 | 0.5 | 1128 | 13.54 |
T2 | 0 | 0 | 0 | 0 | 0 | 0 |
T3 | 0 | 0 | 0 | 0 | 0 | 0 |
T4 | 50 | 200 | 15.65 | 1 | 2852 | 34.24 |
Physical—Solid Biocompost | ||||||||||||
86% | 14% | |||||||||||
Organic matter (MO) | Minerals | |||||||||||
Fine Fraction | 24.05% | Sand | Silt | Clay | ||||||||
Coarse Fraction | 75.95% | 65% | 24% | 11% | ||||||||
Chemical—Solid Biocompost | ||||||||||||
pH | ppm | meq/100 mL | ppm | |||||||||
N | P | S | K | Ca | Mg | Zn | Cu | Fe | Mn | B | ||
8.55 | 87.05 | 210.1 | 22.46 | 11.36 | 17.71 | 5.12 | 57.36 | 30.75 | 245.1 | 128.5 | 0.5 | |
Chemical—Liquid Biocompost | ||||||||||||
gr/100 mL (%) | ppm | |||||||||||
N | P | K | Ca | Mg | S | Zn | Cu | Fe | Mn | B | ||
87.05 | 210.1 | 22.46 | 11.36 | 17.71 | 5.12 | 57.36 | 30.75 | 245.1 | 128.5 | 0.5 | ||
Microbiological Biocompost | ||||||||||||
Solid | Liquid | |||||||||||
Bacillus spp. | Pseudomonas spp. | Penicillium spp. | Yeast | Bacillus spp. | Pseudomonas spp. | Penicillium spp. | Yeast | |||||
71,000,000 | 2650 | 2650 | 30,000 | 600,000,000 | 490,000,000 | 0 | 5000 |
Df | Sum.Sq | Mean.Sq | F.Value | Pr..F. | |
---|---|---|---|---|---|
Treatment | 3 | 7.5785291 | 2.5261764 | 20.350589 | 0.0002390 |
Blocks | 3 | 0.5386399 | 0.1795466 | 1.446407 | 0.2929605 |
Residuals | 9 | 1.1171955 | 0.1241328 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena-Quintana, F.N.; Álvarez, W.; Franco, W.; Moncayo, L.; Tipán, M.; Ayala, J. Land Degraded by Gold Mining in the Ecuadorian Amazon: A Proposal for Boosting Ecosystem Restoration Through Induced Revegetation. Forests 2025, 16, 372. https://doi.org/10.3390/f16020372
Mena-Quintana FN, Álvarez W, Franco W, Moncayo L, Tipán M, Ayala J. Land Degraded by Gold Mining in the Ecuadorian Amazon: A Proposal for Boosting Ecosystem Restoration Through Induced Revegetation. Forests. 2025; 16(2):372. https://doi.org/10.3390/f16020372
Chicago/Turabian StyleMena-Quintana, Fiodor N., Willin Álvarez, Wilfredo Franco, Luis Moncayo, Myriam Tipán, and Jholaus Ayala. 2025. "Land Degraded by Gold Mining in the Ecuadorian Amazon: A Proposal for Boosting Ecosystem Restoration Through Induced Revegetation" Forests 16, no. 2: 372. https://doi.org/10.3390/f16020372
APA StyleMena-Quintana, F. N., Álvarez, W., Franco, W., Moncayo, L., Tipán, M., & Ayala, J. (2025). Land Degraded by Gold Mining in the Ecuadorian Amazon: A Proposal for Boosting Ecosystem Restoration Through Induced Revegetation. Forests, 16(2), 372. https://doi.org/10.3390/f16020372