Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite
<p>The site location of the flux tower in the Huitong fir forest site.</p> "> Figure 2
<p>Comparison of GPP estimates with measured values of the flux tower between 2016 and 2022. The number of available samples was 14633. Each sample represents a half-hourly observation. (<b>a</b>) Prediction using observed climate data from the flux tower. The black dashed line is the data fit line. The red solid line is the 45° tangent. The color intensity of the right bar represents the density of data points. Unit for vertical coordinates is g C m<sup>−2</sup> h<sup>−1</sup>. (<b>b</b>) Residual distribution, RMSE, and MAE corresponding to (<b>a</b>). (<b>c</b>) Prediction using the satellite data. (<b>d</b>) Residual distribution, RMSE, and MAE corresponding to (<b>c</b>).</p> "> Figure 3
<p>Observed variables at the Huitong fir forest site from 2016 to 2022. (<b>a</b>) GPP value, (<b>b</b>) air temperature, (<b>c</b>) precipitation. (<b>d</b>) Average daily temperature and (<b>e</b>) precipitation during climatic events. In (<b>d</b>,<b>e</b>), 1 represents average daily temperature or precipitation during heat events, 2 indicates drought events, 3 indicates compound events, and Ave. indicates overall climatic event averages.</p> "> Figure 4
<p>The number of midday depression occurrences in different years (<b>a</b>), different months (<b>b</b>), and different seasons (<b>c</b>) at the Huitong fir forest site from 2016 to 2022.</p> "> Figure 5
<p>Regression between the number of midday depression occurrences and the number of climatic event occurrences from 2016 to 2022. (<b>a</b>) Regression between the number of midday depression occurrences and the number of heat event occurrences. (<b>b</b>) Regression between the number of midday depression occurrences and the number of drought event occurrences. (<b>c</b>) Regression between the number of midday depression occurrences and the number of compositeevents. (<b>d</b>) Mean annual number of climatic event occurrences from 2016 to 2022. The C event, D event, and HT event represent composite events (compound drought and heat), drought events, and heat events, respectively.</p> "> Figure 6
<p>Probability of midday depression being concurrently triggered by climatic events between 2016 and 2022. HT event, D event, and C event represent heat events, drought events, and composite events (compound drought and heat), respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, X.; Li, S.; Wan, X.; Huang, Z.; Liu, B.; Fu, S.; Kumar, P.; Chen, H.Y. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. For. Ecol. Manag. 2021, 483, 118750. [Google Scholar] [CrossRef]
- Dorman, M.; Perevolotsky, A.; Sarris, D.; Svoray, T. The effect of rainfall and competition intensity on forest response to drought: Lessons learned from a dry extreme. Oecologia 2015, 177, 1025–1038. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Zhu, J.; Zhang, J. Comparisons of radial growth and tree-ring cellulose δ 13 C for Pinus sylvestris var. mongolica in natural and plantation forests on sandy lands. J. For. Res. 2017, 22, 160–168. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, M.; Bai, P.; Li, J.; Liu, L.; Tian, W. Warming intensifies severe drought over China from 1980 to 2019. Int. J. Clim. 2023, 43, 1980–1992. [Google Scholar] [CrossRef]
- Lloret, F.; Batllori, E. Climate-Induced Global Forest Shifts due to Heatwave-Drought. In Ecological Studies; Canadell, J.G., Jackson, R.B., Eds.; Springer International Publishing, Cham, Switzerland, 2021; pp. 155–186. [Google Scholar] [CrossRef]
- Qu, L.; De Boeck, H.J.; Fan, H.; Dong, G.; Chen, J.; Xu, W.; Ge, Z.; Huang, Z.; Shao, C.; Hu, Y. Diverging responses of two subtropical tree species (Schima superba and Cunninghamia lanceolata) to heat waves. Forests 2020, 11, 513. [Google Scholar] [CrossRef]
- Maai, E.; Nishimura, K.; Takisawa, R.; Nakazaki, T. Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod. Sci. 2020, 23, 172–181. [Google Scholar] [CrossRef]
- Wang, H.; Prentice, I.C.; Davis, T.W. Biophsyical constraints on gross primary production by the terrestrial biosphere. Biogeosciences 2014, 11, 5987–6001. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xie, Z.K.; Wang, Y.J.; Su, P.X.; An, L.P.; Gao, H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [Google Scholar] [CrossRef]
- Flexas, J.; Badger, M.; Chow, W.S.; Medrano, H.L.; Osmond, C.B. Analysis of the Relative Increase in Photosynthetic O2 Uptake When Photosynthesis in Grapevine Leaves Is Inhibited Following Low Night Temperatures and/or Water Stress. Plant Physiol. 1999, 121, 675–684. [Google Scholar] [CrossRef]
- Damm, A.; Elbers, J.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Chang. Biol. 2009, 16, 171–186. [Google Scholar] [CrossRef]
- Bucci, S.J.; Silletta, L.M.C.; Garré, A.; Cavallaro, A.; Efron, S.T.; Arias, N.S.; Goldstein, G.; Scholz, F.G. Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant Cell Environ. 2019, 42, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Koyama, K.; Bhusal, N. Diurnal change of the photosynthetic light-response curve of buckbean (Menyanthes trifoliata), an emergent aquatic plant. Plants 2022, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Tanizaki, T.; Yokoyama, G.; Kitano, M.; Yasutake, D. Contribution of diffusional and non-diffusional limitations to the midday depression of photosynthesis which varies dynamically even under constant environmental conditions. Int. Agrophysics 2022, 36, 207–212. [Google Scholar] [CrossRef]
- Guo, X.Y.; Peng, C.H.; Li, T.; Huang, J.J.; Song, H.X.; Zhu, Q.A.; Wang, M. The effects of drought and re-watering on non-structural carbohydrates of Pinus tabulaeformis seedlings. Biology 2021, 10, 281. [Google Scholar] [CrossRef]
- Clarendon, G. The Emerald Planet: How Plants Changed Earth’s History. Quart. Rev. Biol. 2008, 83, 117–118. [Google Scholar] [CrossRef]
- Ferrar, P.; Slatyer, R.; Vranjic, J. Photosynthetic Temperature Acclimation in Eucalyptus Species from Diverse Habitats, and a Comparison with Nerium oleander. Funct. Plant Biol. 1989, 16, 199–217. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Zhang, Z. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 2020, 15, 074027. [Google Scholar] [CrossRef]
- Koyama, K.; Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2014, 4, 4389. [Google Scholar] [CrossRef]
- Xiao, J.F.; Fisher, J.; Hashimoto, H.; Ichii, K.; Parazoo, N.C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 2021, 7, 877–887. [Google Scholar] [CrossRef]
- Yang, X.; Mustard, J.; Tang, J.; Xu, H. Regional-scale phenology modeling based on meteorological records and remote sensing observations. J. Geophys. Res. Biogeosci. 2012, 117, G03029. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.; Gu, L.; Joiner, J.; Chang, C.Y.; van der Tol, C.; Porcar-Castell, A.; Magney, T.; Wang, L.; Hu, L.; et al. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I-Harnessing theory. Glob. Chang. Biol. 2023, 29, 2926–2952. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Li, X.; Ryu, Y.; Xiao, J.; Dechant, B.; Liu, J.; Li, B.; Jeong, S.; Gentine, P. New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci. Adv. 2023, 9, eadi0775. [Google Scholar] [CrossRef] [PubMed]
- Consoli, S.; Vanella, D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. J. Hydrol. 2014, 513, 475–489. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Fisher, J.B.; Baldocchi, D.D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 2021, 258, 112360. [Google Scholar] [CrossRef]
- Hunan Meteorological Bureau. Top 10 Weather and Climate Events in Hunan Province in 2022. Available online: https://www.hengyang.gov.cn/xxgk/dtxx/tzgg/gsgg/20230323/i2966725.html (accessed on 24 May 2024).
- China Meteorological Administration. Top 10 Domestic and Foreign Weather and Climate Events of 2022. Available online: https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202301/t20230109_5247477.html (accessed on 24 May 2024).
- China Meteorological Administration. CHINA CLIMATE BULLETIN (2020). Available online: https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202104/t20210406_3051288.html (accessed on 24 May 2024).
- Wang, S.; Wang, S.; Feng, J. Drought Events and Its Influence in Autumn of 2016 in China. J. Arid. Metcorology 2016, 34, 1099–1104. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Ye, S.; Yan, J. Seasonal patterns of carbon and water flux responses to precipitation and solar radiation variability in a subtropical evergreen forest, South China. Agric. For. Meteorol. 2023, 342, 109760. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Y.; Wang, X.; Wang, B.; Xiao, F.; He, K. Physiological response and drought resistance evaluation of Gleditsia sinensis seedlings under drought-rehydration state. Sci. Rep. 2023, 13, 19963. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.M.; Tan, X.L. Research progress on the physiological response and molecular mechanism of cold response in plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2020, 22, 117. [Google Scholar] [CrossRef]
- Li, B.; Gao, K.; Ren, H.; Tang, W. Molecular mechanisms governing plant responses to high temperatures. J. Integr. Plant Biol. 2018, 60, 757–779. [Google Scholar] [CrossRef] [PubMed]
- Jajoo, A.; Allakhverdiev, S.I. High Temperature Stress in Plants: Consequences and Strategies for Protecting Photosynthetic Machinery. In Plant Stress Physiology; CABI: Wallingford, UK, 2017; pp. 138–154. [Google Scholar] [CrossRef]
- Rennenberg, H.; Loreto, F.; Polle, A.; Brilli, F.; Fares, S.; Beniwal, R.S.; Gessler, A. Physiological Responses of Forest Trees to Heat and Drought. Plant Biol. 2006, 8, 556–571. [Google Scholar] [CrossRef]
- Moroney, J.V.; Jungnick, N.; Dimario, R.J.; Longstreth, D.J. Photorespiration and carbon concentrating mechanisms: Two adaptations to high O2, low CO2 conditions. Photosynth. Res. 2013, 117, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Yang, K.; Hu, X.; Jiang, H. Fine-control of growth and thermotolerance in plant response to heat stress. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Murata, Y.; Mori, I.C. Stomatal regulation of plant water status. In Plant Abiotic Stress; John, Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 47–67. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Kausar, A.; Al Zeidi, M.; Asekova, S.; Siddique, K.H.M.; Farooq, M. Plant photosynthetic responses under drought stress: Effects and management. J. Agron. Crop. Sci. 2023, 209, 651–672. [Google Scholar] [CrossRef]
- Earl, H.J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exp. Bot. 2002, 48, 237–246. [Google Scholar] [CrossRef]
- Drake, J.E.; Power, S.A.; Duursma, R.A.; Medlyn, B.E.; Aspinwall, M.J.; Choat, B.; Creek, D.; Eamus, D.; Maier, C.; Pfautsch, S.; et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agric. For. Meteorol. 2017, 247, 454–466. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Zhang, H.; Li, Y.; Niu, L.; Zhang, J.; Wang, W. Signaling Transduction of ABA, ROS, and Ca2+ in Plant Stomatal Closure in Response to Drought. Int. J. Mol. Sci. 2022, 23, 14824. [Google Scholar] [CrossRef]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.J.; Allakhverdiev, S.I.; Yang, X.H.; Safdar, M.E.; Yang, W.Y.; Liu, W.G. Photosynthesis research under climate change. Photosynth. Res. 2021, 150, 5–19. [Google Scholar] [CrossRef]
- Ye, Z.P. Nonlinear optical absorption of photosynthetic pigment molecules in leaves. Photosynth. Res. 2012, 112, 31–37. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, H.; Li, Y.H.; Wang, L.; Kong, D.S.; Guo, Y.Y.; Yan, F.; Wang, Y.W.; Lu, K.; Tian, J.W.; et al. Effect of Water Stress on Photosynthesis, Chlorophyll Fluorescence Parameters and Water Use Efficiency of Common Reed in the Hexi Corridor. Russ. J. Plant Physiol. 2019, 66, 556–563. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Li, J.; Li, L.H.; Li, X.G.; Yu, G.R.; Sun, X.M. Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration. Agric. For. Meteorol. 2006, 137, 194–219. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Chen, Y.; Ouyang, L.; Li, Y.; Sun, F.; Liu, Y.; Zhu, J. Drought-heatwave compound events are stronger in drylands. Weather Clim. Extrem. 2023, 42, 100632. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhai, P. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep. 2020, 10, 14576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Chen, K.; Li, T.; Liu, J.; Wang, Y.; Zhou, X. Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite. Forests 2024, 15, 1572. https://doi.org/10.3390/f15091572
Xie Q, Chen K, Li T, Liu J, Wang Y, Zhou X. Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite. Forests. 2024; 15(9):1572. https://doi.org/10.3390/f15091572
Chicago/Turabian StyleXie, Qianqian, Kexin Chen, Tong Li, Jia Liu, Yuqiu Wang, and Xiaolu Zhou. 2024. "Heat and Drought Have Exacerbated the Midday Depression Observed in a Subtropical Fir Forest by a Geostationary Satellite" Forests 15, no. 9: 1572. https://doi.org/10.3390/f15091572