Impact of Tree Age and Size on Selected Properties of Black Locust (Robinia pseudoacacia L.) Wood
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Properties
3.2. Physical Properties
3.3. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pötzelsberger, E.; Spiecker, H.; Neophytou, C.; Mohren, F.; Gazda, A.; Hasenauer, H. Growing Non-native Trees in European Forests Brings Benefits and Opportunities but Also Has Its Risks and Limits. Curr. For. Rep. 2020, 6, 339–353. [Google Scholar] [CrossRef]
- Nyssen, B.; Schmidt, U.E.; Muys, B.; Lei, P.B.; van der Pyttel, P. The history of introduced tree species in Europe in a nutshell. In Introduced Tree Species in European Forests: Opportunities and Challenges; Krumm, F., Vítková, L., Eds.; EFI: Freiburg, Germany, 2016; pp. 44–54. [Google Scholar]
- Brus, R.; Pötzelsberger, E.; Lapin, K.; Brundu, G.; Orazio, C.; Straigyte, L.; Hasenauer, H. Extent, distribution and origin of non-native forest tree species in Europe. Scand. J. For. Res. 2019, 34, 533–544. [Google Scholar] [CrossRef]
- Wojda, T.; Klisz, M.; Jastrzębowski, S.; Mionskowski, M.; Szyp-Borowska, I.; Szczygieł, K. The geographical distribution of the black locust (Robinia pseudoacacia L.) in Poland and its role on non-forest land. Pap. Glob. Chang. 2015, 22, 101–113. [Google Scholar] [CrossRef]
- Sitzia, T.; Cierjacks, A.; de Rigo, D.; Caudullo, G. Robinia pseudoacacia in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Redei, K.; Nicolescu, V.N.; Vor, T.; Potzelsberger, E.; Bastien, J.C.; Brus, R.; Bencat, T.; Đodan, M.; Cvjetković, B.; Andrašev, S.; et al. Ecology and management of black locust (Robinia pseudoacacia L.), a non-native tree species integrated in European forests and landscapes. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef] [Green Version]
- Nicolescu, V.-N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: A review. J. For. Res. 2018, 29, 1449–1463. [Google Scholar] [CrossRef]
- Gazda, A.; Miścicki, S.; Wąsik, R.; Goczał, J.; Kędra, K. Poland—Country report. In Non-Native Tree Species for European Forests: Experiences, Risks and Opportunities; Hasenauer, H., Gazda, A., Konnert, M., Lapin, K., Mohren, F., Spiecker, H., van Loo, M., Pötzelsberger, E., Eds.; BOKU (University of Natural Resources and Life Sciences): Vienna, Austria, 2017; pp. 284–297. [Google Scholar]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Lazzaro, L.; Mazza, G.; d’Errico, G.; Fabiani, A.; Giuliani, C.; Inghilesi, A.F.; Lagomarsino, A.; Landi, S.; Lastrucci, L.; Pastorelli, R.; et al. How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci. Total Environ. 2018, 622–623, 1509–1518. [Google Scholar] [CrossRef]
- Jamińska, J.; Bronisz, K.; Bijak, S. Wielkość i wartość zasobów surowca drzewnego robinii akacjowej i daglezji zielonej w Lasach Państwowych. Sylwan 2018, 162, 737–744. [Google Scholar] [CrossRef]
- Bijak, S.; Zastocki, D. Kształtowanie się cen drewna wybranych obcych gatunków drzew w Polsce na tle pozyskania w latach 2013–2018. Sylwan 2021, 165, 101–108. [Google Scholar] [CrossRef]
- Das, D.K. Properties of woods in relation to various uses. Bull. Wood Anat. Ser. 1984, 7, 1–19. [Google Scholar]
- Lachowicz, H.; Sajdak, M.; Paschalis-Jakubowicz, P.; Cichy, W.; Wojtan, R.; Witczak, M. The Influence of Location, Tree Age and Forest Habitat Type on Basic Fuel Properties of the Wood of the Silver Birch (Betula pendula Roth.) in Poland. Bioenerg. Res. 2018, 11, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Thurm, E.A.; Hernandez, L.; Baltensweiler, A.; Ayan, S.; Rasztovits, E.; Bielak, K.; Zlatanov, T.M.; Hladnik, D.; Balic, B.; Freudenschuss, A.; et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 2018, 430, 485–497. [Google Scholar] [CrossRef]
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M.; Wojda, T.; et al. Black Locust (Robinia Pseudoacacia, L.) Range Contraction and Expansion in Europe under Changing Climate. Glob. Chang. Biol. 2021, 27, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Martyn, D. Klimaty Kuli Ziemskiej; PWN: Warsaw, Poland, 2000. [Google Scholar]
- Graves, H.S. Forest Mensuration; Wiley: New York, NY, USA, 1906. [Google Scholar]
- Lachowicz, H.; Wróblewska, H.; Wojtan, R.; Sajdak, M. The effect of tree age on the chemical composition of the wood of silver birch (Betula pendula Roth.) in Poland. Wood Sci. Tech. 2019, 53, 1135–1155. [Google Scholar] [CrossRef] [Green Version]
- PN-77/D-04227 Drewno. Ogólne Wytyczne Pobierania I Przygotowania Próbek (Wood. General Methods of Sampling); Polish Normalisation Committee: Warsaw, Poland, 1977. [Google Scholar]
- Adamopoulos, S.; Passialis, C.; Voulgaridis, E. Strength properties of Juvenile and Mature wood in Black locust (Robinia pseudoacacia L.). Wood Fib. Sci. 2006, 39, 241–249. [Google Scholar]
- Pollet, C.; Verheyen, C.; Hébert, J.; Jourez, B. Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium. Can. J. For. Res. 2012, 42, 831–840. [Google Scholar] [CrossRef] [Green Version]
- PN-63/D-04117 Fizyczne i Mechaniczne Własności Drewna. Oznaczanie Współczynnika Sprężystości Przy Zginaniu Statycznym. (Physical and Mechanical Properties of Timber. Determination of the Modulus of Elasticity at Static Bending); Polish Normalisation Committee: Warsaw, Poland, 1963. [Google Scholar]
- PN-77/D-04103 Drewno. Oznaczanie Wytrzymałości Na Zginanie Statyczne. (Wood. Determination of Ultimate Strength in Static Bending); Polish Normalisation Committee: Warsaw, Poland, 1977. [Google Scholar]
- PN-79/D-04102 Drewno. Oznaczanie Wytrzymałości Na Ściskanie Wzdłuż Włókien. (Wood. Determination of Ultimate Stress in Compression Parallel to Grain); Polish Normalisation Committee: Warsaw, Poland, 1979. [Google Scholar]
- PN-82/D-04111 Drewno. Oznaczanie Skurczu I Spęcznienia (Wood. Determination of Shrinking and Swelling); Polish Normalisation Committee: Warsaw, Poland, 1982. [Google Scholar]
- PN-77/D-04100 Drewno. Oznaczanie Wilgotności (Wood. Determination of Moisture Content); Polish Normalisation Committee: Warsaw, Poland, 1977. [Google Scholar]
- PN-77/D-04101 Drewno. Oznaczanie Gęstości (Wood. Determination of the Density); Polish Normalisation Committee: Warsaw, Poland, 1977. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001, 4, 9. [Google Scholar]
- Barrett, R.P.; Mebrahtu, T.; Hanover, J.W. Black locust: A multi-purpose tree species for temperate climates. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, ME, USA, 1990; pp. 278–283. [Google Scholar]
- Kraszkiewicz, A. Analiza gęstości wybranych sortymentów surowca drzewnego robinii akacjowej. Prob. Inż. Roln. 2008, 16, 69–76. [Google Scholar]
- Grünewald, H.; Böhm, C.; Quinkenstein, A.; Grundmann, P.; Eberts, J.; von Wühlisch, G. Robinia pseudoacacia L.: A lesser known tree species for biomass production. BioEnergy Res. 2009, 2, 123–133. [Google Scholar] [CrossRef]
- Molnar, S. Wood properties and utilization of black locust in Hungary. Drev. Vysk. Wood Res. 1995, 1, 27–33. [Google Scholar]
- Kozakiewicz, P.; Wiktorski, T. Robinia akacjowa (Robinia pseudoacacia L.)—Drewno egzotyczne z Ameryki Północnej. Przem. Drzew. 2007, 1, 25–28. [Google Scholar]
- Krzysik, F. Nauka O Drewnie; PWN: Warszawa, Poland, 1974. [Google Scholar]
- Keil, G.; Spavento, E.; Murace, M. Acacia blanca (Robinia pseudoacacia L.) y acacia negra (Gleditsia triacanthos L.): Aspectos tecnologicos relacionados al empelo en productos de madera maciza. For. Syst. 2011, 20, 21–26. [Google Scholar]
- Niklas, K.J. Mechanical Properties of Black Locust (Robinia pseudoacacia) Wood: Corelations among Elastic and Rupture Moduli, Proportional Limit and Tissue Density and Specific Gravity. Ann. Bot. 1997, 79, 479–485. [Google Scholar]
- Schroeder, H.A. Shrinking and swelling differences between hardwoods and softwoods. Wood Fib. Sci. 1972, 4, 20–25. [Google Scholar]
- Lachowicz, H. Wpływ grubości drzew na wartości wybranych parametrów i wskaźników struktury włókien drewna brzozy brodawkowatej (Betula pendula Roth.). Przegl. Pap. 2011, 5, 321–326. [Google Scholar]
- Lachowicz, H. Wpływ grubości drzew na wybrane właściwości strukturalne i fizyczno-mechaniczne drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan 2011, 155, 581–588. [Google Scholar] [CrossRef]
- Wilczyński, A. Badanie właściwości sprężystych drewna sosny, buka i dębu. Zesz. Nauk. WSPed Bydg. Stud. Techn. 1989, 15, 89–123. [Google Scholar]
- Kamperidou, V.; Barboutis, I.; Vassiliou, V. Prospects for the Utilization of Black locust Wood (Robinia pseudoacacia L.) coming from plantations in Furniture Manufacturing. In Proceedings of the 27th International Conference on Wood Modification and Technology 2016, Zagreb, Croatia, 13–14 October 2016. [Google Scholar]
- Meinzer, F.C.; Lachenbruch, B.; Dawson, T.E. (Eds.) Size- and Age-Related Changes in Tree Structure and Function; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Rocha, M.F.; Veiga, T.R.; Soares, B.C.; Araújo, A.C.; Carvalho, A.M.; Hein, P.R. Do the Growing Conditions of Trees Influence the Wood Properties? Flor. Amb. 2019, 26, 20180353. [Google Scholar] [CrossRef]
- Lachowicz, H. Wpływ położenia i wieku drzew na wartości współczynników jakości wytrzymałościowej drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan 2011, 155, 535–545. [Google Scholar] [CrossRef]
- Berrocal, A.; Baeza, J.; Rodriguez, J.; Espinosa, M.; Freer, J. Effect of tree age on variation of Pinus radiata D.DON chemical composition. J. Chil. Chem. Soc. 2004, 49, 251–256. [Google Scholar] [CrossRef]
- Megraw, R.A. Wood quality factors in loblolly pine. In The Influence of Tree Age, Position in Tree, and Cultural Practice on Wood Specific Gravity, Fiber Length and Fibril Angle; TAPPI Press, Technology Park: Atlanta, GA, USA, 1985. [Google Scholar]
- Savva, Y.; Koubaa, A.; Tremblay, F.; Bergeron, Y. Effects of radial growth, tree age, climate, and seed origin on wood density of diverse jack pine populations. Trees 2010, 24, 53–65. [Google Scholar] [CrossRef]
- Innes, T. Processing and wood properties of four ages of Eucalyptus obliqua. Holz Roh Werkst. 2007, 65, 197–200. [Google Scholar] [CrossRef]
- Chen, L.; Xiang, W.; Wu, H.; Lei, P.; Zhang, S.; Ouyang, S.; Deng, X.; Fang, X. Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest. Ecol. Evol. 2017, 14, 5366–5377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Ren, H.; Jiang, Z. Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana). J. Wood Sci. 2021, 67, 30. [Google Scholar] [CrossRef]
Age | D | H | SI | V | %BL |
---|---|---|---|---|---|
38 | 18 | 16 | 25.2 | 132 | 100 |
60 | 33 | 21 | 24.2 | 158 | 80 |
71 | 35 | 23 | 28.8 | 180 | 80 |
Density | Age/Size Class | Mean | Minimum–Maximum | Standard Error | K-W |
---|---|---|---|---|---|
G | II | 859.7 a | 788.8–927.3 | 5.39 | H = 104.70 p < 0.001 |
III | 749.3 b | 674.9–833.2 | 4.35 | ||
IV | 717.8 c | 643.8–815.4 | 3.62 | ||
1 | 722.1 a | 665.8–841.9 | 5.76 | H = 25.02 p < 0.001 | |
2 | 673.6 b | 643.8–917.7 | 4.58 | ||
3 | 595.8 b | 663.1–927.3 | 3.60 | ||
Gb | II | 824.4 a | 748.3–883.2 | 5.14 | H = 104.50 p < 0.001 |
III | 706.3 b | 606.8–784.9 | 4.48 | ||
IV | 668.5 c | 590.0–766.7 | 3.37 | ||
1 | 769.9 a | 609.9–796.5 | 8.58 | H = 27.42 p < 0.001 | |
2 | 725.1 b | 590.0–883.2 | 7.92 | ||
3 | 638.3 b | 606.8–848.5 | 5.33 | ||
G0% | II | 707.5 a | 658.0–745.1 | 3.52 | H = 104.90 p < 0.001 |
III | 624.0 b | 538.8–686.3 | 3.86 | ||
IV | 595.3 c | 535.7–667.0 | 2.54 | ||
1 | 762.1 a | 550.5–690.3 | 8.96 | H = 21.43 p < 0.001 | |
2 | 716.4 b | 535.7–745.1 | 8.17 | ||
3 | 630.9 b | 538.8–726.9 | 5.80 | ||
C | II | 45.04 a | 41.12–50.11 | 0.34 | H = 104.90 p < 0.001 |
III | 52.91 b | 47.67–59.54 | 0.30 | ||
IV | 55.43 c | 48.83–60.67 | 0.22 | ||
1 | 55.09 c | 46.90–59.34 | 0.36 | H = 21.44 p < 0.001 | |
2 | 51.66 a | 41.12–60.67 | 0.53 | ||
3 | 52.24 b | 43.43–59.54 | 0.52 |
Parameter | Age/Size Class | Mean | Minimum–Maximum | Standard Error | K-W |
---|---|---|---|---|---|
βmaxR | II | 6.19 c | 4.73–7.15 | 0.09 | H = 72.86 p < 0.001 |
III | 4.97 b | 3.73–6.57 | 0.06 | ||
IV | 4.72 a | 3.44–5.76 | 0.05 | ||
1 | 4.99 a | 3.77–6.57 | 0.08 | H = 0.03 p = 0.984 | |
2 | 5.12 a | 3.88–7.15 | 0.10 | ||
3 | 5.06 a | 3.44–6.78 | 0.08 | ||
βmaxT | II | 8.34 c | 6.78–9.52 | 0.12 | H = 80.01 p < 0.001 |
III | 6.74 b | 5.13–8.90 | 0.09 | ||
IV | 6.15 a | 4.27–8.24 | 0.09 | ||
1 | 6.50 a | 4.27–8.24 | 0.12 | H = 2.09 p = 0.351 | |
2 | 6.80 a | 4.70–9.52 | 0.15 | ||
3 | 6.84 a | 4.80–8.96 | 0.13 | ||
βmaxL | II | 0.17 a | 0.03–0.39 | 0.02 | H = 25.93 p < 0.001 |
III | 0.30 b | 0.03–0.82 | 0.02 | ||
IV | 0.39 c | 0.07–1.02 | 0.03 | ||
1 | 0.42 b | 0.03–0.97 | 0.03 | H = 12.13 p = 0.002 | |
2 | 0.29 a | 0.03–1.02 | 0.03 | ||
3 | 0.29 a | 0.03–0.82 | 0.02 | ||
βmaxV | II | 14.16 c | 11.46–16.09 | 0.18 | H = 77.62 p < 0.001 |
III | 11.64 b | 9.04–14.16 | 0.13 | ||
IV | 10.92 a | 8.45–14.00 | 0.13 | ||
1 | 11.53 a | 8.45–14.00 | 0.17 | H = 0.71 p = 0.700 | |
2 | 11.82 a | 8.98–16.09 | 0.22 | ||
3 | 11.80 a | 8.65–15.02 | 0.18 | ||
KβR | II | 0.21 c | 0.16–0.24 | 0.003 | H = 73.42 p < 0.001 |
III | 0.17 b | 0.12–0.22 | 0.002 | ||
IV | 0.16 a | 0.11–0.19 | 0.002 | ||
1 | 0.17 a | 0.13–0.22 | 0.003 | H = 0.03 p = 0.987 | |
2 | 0.17 a | 0.13–0.24 | 0.004 | ||
3 | 0.17 a | 0.11–0.23 | 0.002 | ||
KβT | II | 0.28 c | 0.23–0.32 | 0.003 | H = 78.87 p < 0.001 |
III | 0.22 b | 0.17–0.30 | 0.003 | ||
IV | 0.20 a | 0.14–0.27 | 0.003 | ||
1 | 0.22 a | 0.14–0.27 | 0.004 | H = 2.02 p = 0.363 | |
2 | 0.23 a | 0.16–0.32 | 0.005 | ||
3 | 0.23 a | 0.16–0.30 | 0.005 | ||
KβL | II | 0.01 c | 0.00–0.01 | 0.000 | H = 25.91 p < 0.001 |
III | 0.01 b | 0.00–0.03 | 0.001 | ||
IV | 0.01 a | 0.00–0.03 | 0.001 | ||
1 | 0.01 a | 0.00–0.03 | 0.001 | H = 12.10 p = 0.002 | |
2 | 0.01 b | 0.00–0.03 | 0.001 | ||
3 | 0.01 b | 0.00–0.03 | 0.001 | ||
KβV | II | 0.47 c | 0.38–0.54 | 0.007 | H = 76.62 p < 0.001 |
III | 0.39 b | 0.30–0.47 | 0.005 | ||
IV | 0.36 a | 0.28–0.47 | 0.004 | ||
1 | 0.38 a | 0.28–0.47 | 0.006 | H = 0.72 p = 0.698 | |
2 | 0.39a | 0.30–0.54 | 0.007 | ||
3 | 0.39a | 0.29–0.50 | 0.006 | ||
Aβ | II | 1.35a | 1.17–1.62 | 0.015 | H = 3.96 p = 0.138 |
III | 1.36 a | 0.99–1.81 | 0.016 | ||
IV | 1.31 a | 0.94–1.67 | 0.017 | ||
1 | 1.31 a | 1.00–1.67 | 0.021 | H = 2.45 p = 0.294 | |
2 | 1.33 a | 0.94–1.61 | 0.018 | ||
3 | 1.36 a | 1.01–1.81 | 0.015 |
Parameter | Age/Size Class | Mean | Minimum–Maximum | Standard Error | K-W |
---|---|---|---|---|---|
Rc12 | II | 77.2 b | 64.6–87.0 | 1.0 | H = 8.42 p = 0.015 |
III | 75.1 b | 55.1–88.6 | 1.0 | ||
IV | 74.2 a | 63.1–83.6 | 0.5 | ||
1 | 69.9 a | 57.6–82.5 | 1.0 | H = 34.29 p < 0.001 | |
2 | 77.8 c | 63.9–88.6 | 0.7 | ||
3 | 76.0 b | 55.1–86.7 | 0.6 | ||
Rg12 | II | 178.1 a | 153.7–202.1 | 2.5 | H = 58.25 p < 0.001 |
III | 153.2 b | 80.9–179.4 | 2.2 | ||
IV | 148.8 c | 116.5–180.9 | 1.4 | ||
1 | 147.6 a | 119.1–180.9 | 2.1 | H = 0.09 p < 0.001 | |
2 | 161.3 c | 116.5–202.1 | 2.1 | ||
3 | 155.7 b | 80.9–198.6 | 2.3 | ||
Eg12 | II | 16,423 a | 12,084–19,846 | 385.4 | H = 0.685 p = 0.710 |
III | 13,939 a | 10,342–17,319 | 186.7 | ||
IV | 13,601 a | 10,441–19,838 | 154.3 | ||
1 | 13,052 a | 10,342–16,458 | 202.3 | H = 7.68 p = 0.022 | |
2 | 14,808 b | 10,731–19,846 | 249.7 | ||
3 | 14,471 a | 11,548–18,562 | 207.8 | ||
JRc12 | II | 9.03 a | 7.84–10.07 | 0.10 | H = 34.29 p < 0.001 |
III | 10.07 b | 8.50–11.22 | 0.09 | ||
IV | 10.33 b | 9.07–11.10 | 0.05 | ||
1 | 9.74 a | 8.03–11.10 | 0.11 | H = 9.19 p < 0.001 | |
2 | 10.16 b | 7.84–11.22 | 0.09 | ||
3 | 10.05 b | 7.85–11.18 | 0.08 | ||
JRg12 | II | 20.7 b | 17.1–22.8 | 0.24 | H = 36.92 p < 0.001 |
III | 20.4 a | 10.5–23.0 | 0.24 | ||
IV | 20.8 c | 14.7–26.1 | 0.20 | ||
1 | 20.4 a | 17.6–24.8 | 0.22 | H = 24.07 p < 0.001 | |
2 | 21.0 b | 14.7–26.1 | 0.24 | ||
3 | 20.4 a | 10.5–22.9 | 0.22 | ||
JEg12 | II | 1906 a | 1476–2200 | 37.9 | H = 3.42 p = 0.181 |
III | 1857 a | 1532–2242 | 18.7 | ||
IV | 1891 a | 1568–2433 | 14.3 | ||
1 | 1807 a | 1530–2151 | 23.0 | H = 11.32 p = 0.003 | |
2 | 1917 b | 1632–2433 | 18.6 | ||
3 | 1897 b | 1476–2242 | 17.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bijak, S.; Lachowicz, H. Impact of Tree Age and Size on Selected Properties of Black Locust (Robinia pseudoacacia L.) Wood. Forests 2021, 12, 634. https://doi.org/10.3390/f12050634
Bijak S, Lachowicz H. Impact of Tree Age and Size on Selected Properties of Black Locust (Robinia pseudoacacia L.) Wood. Forests. 2021; 12(5):634. https://doi.org/10.3390/f12050634
Chicago/Turabian StyleBijak, Szymon, and Hubert Lachowicz. 2021. "Impact of Tree Age and Size on Selected Properties of Black Locust (Robinia pseudoacacia L.) Wood" Forests 12, no. 5: 634. https://doi.org/10.3390/f12050634
APA StyleBijak, S., & Lachowicz, H. (2021). Impact of Tree Age and Size on Selected Properties of Black Locust (Robinia pseudoacacia L.) Wood. Forests, 12(5), 634. https://doi.org/10.3390/f12050634