Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm
<p>Illustration of properties of Hamiltonians constructed with Theorem 1.</p> "> Figure 2
<p>Corollary 2 shows that adding a mixer with support outside <math display="inline"><semantics> <mrow> <mo form="prefix">Sp</mo> <mfenced open="(" close=")"> <mi>B</mi> </mfenced> </mrow> </semantics></math> is also a valid mixer for <span class="html-italic">B</span>.</p> "> Figure 3
<p>Examples of the squared overlap between two states for the case <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>B</mi> <mo>|</mo> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. The squared overlap is independent of what the states in <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>{</mo> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo stretchy="false">⟩</mo> <mo>,</mo> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo stretchy="false">⟩</mo> <mo>,</mo> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo stretchy="false">⟩</mo> <mo>,</mo> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo stretchy="false">⟩</mo> <mo>}</mo> </mrow> </semantics></math> are. The comparison for different <span class="html-italic">T</span> shows that there exists a <math display="inline"><semantics> <mi>β</mi> </semantics></math> such that the overlap is nonzero, except for <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>2</mn> <mo>↔</mo> <mn>3</mn> </mrow> </msub> </semantics></math> which, as expected, does not provide transitions between <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo stretchy="false">⟩</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo stretchy="false">|</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo stretchy="false">⟩</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Examples of the structure of <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mo form="prefix">Ham</mo> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </msub> </semantics></math>. The black color represents non-vanishing entries equal to one, representing pairs with the specified Hamming distance.</p> "> Figure 5
<p>In the commutation graph (<b>middle</b>) of the terms of the mixer given in Equation (<a href="#FD47-algorithms-15-00202" class="html-disp-formula">47</a>), an edge occurs if the terms commute. From this, we can group terms into three (nodes connected by green edge) or two (nodes connected by red/blue edges) sets. Only the <b>left</b>/green grouping preserves the feasible subspace, the <b>right</b> one does not.</p> "> Figure 6
<p>Valid (white) and invalid (black) transitions between pairs of states, as defined in Theorem 2 for Trotterized mixer Hamiltonians. The first row shows that for <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>O</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>E</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msub> </mrow> </semantics></math>, the mixer <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>i</mi> <mi>β</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>i</mi> <mi>β</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </semantics></math> does not provide transitions between all pairs of feasible states, although <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>i</mi> <mi>β</mi> <mo>(</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </msup> </mrow> </semantics></math> does.</p> "> Figure 7
<p>Comparison of different Trotterization mixers restricted to “one-hot” states. All markers represent cases when the resulting mixer provides transitions for all pairs of feasible states; see also <a href="#algorithms-15-00202-f006" class="html-fig">Figure 6</a>. All versions can be implemented in linear depth. The most efficient Trotterizations are achieved by using sub-diagonal entries. The cost equals 4 times # (XX + YY)-terms.</p> ">
Abstract
:1. Introduction
- does not commute with , i.e., , for almost all ;
- preserves the feasible subspace as given in Definition 1, i.e., is an invariant subspace of ,
- provides transitions between all pairs of feasible states, i.e., for each pair and , such that
2. Related Work
- A general framework to construct mixers restricted to a set of computational basis states; see Section 3.1.
- An analysis of the underlying mathematical structure, which is largely independent of the actual states; see Section 3.2.
- Efficient algorithms for decomposition into basis gates; see Section 3.3 and Section 3.5.
- Valid Trotterizations, which is not completely understood in the literature; see Section 3.5.
- We prove that it is always possible to realize a valid Trotterization; see Theorem 3.
- Improved efficiency of Trotterized mixers for “one-hot” states in Section 5.1.
- Discussion of the general case, exemplified in Section 5.2.
3. Construction of Constraint Preserving Mixers
3.1. Conditions on the Mixer Hamiltonian
- If T is symmetric, the mixer is well defined and preserves the feasible subspace, i.e., condition (5) is fulfilled.
- If T is symmetric and for all , there exists an (possibly depending on the pair) such that
3.2. Transition Matrices for Mixers
- is symmetric; and
- for all there exists an such that .
3.2.1. Hamming Distance One Mixer
3.2.2. All-to-All Mixer
3.2.3. (Cyclic) Nearest Integer Mixer /
3.2.4. Products of Mixers and
3.2.5. Random Mixer
3.3. Decomposition of (Constraint) Mixers into Basis Gates
Algorithm 1: Decompose given by Equation (10) into Pauli-strings via trace |
|
Algorithm 2: Decompose given by Equation (10) into Pauli-strings directly |
|
3.4. Optimality of Mixers
3.4.1. Transition Matrix T
3.4.2. Adding Mixers
3.4.3. Non-Commuting Pauli-Strings
3.5. Trotterizations
- The first possible Trotterization is given by and . However, it turns out that such that for all . This means that this Trotterization does not preserve the feasible subspace and does not represent a valid mixer Hamiltonian. The underlying reason for this is that the terms and are generated from the entry , but are split in this Trotterization. The same holds true for and , which are generated via .
- The second possible Trotterization is given by and , which splits terms with respect to and In this case, we have that , so it does not provide an overlap between all feasible computational basis states. This can be understood via Theorem 2. We have that for all , so one can not “reach” |100⟩ from |001⟩. The opposite is not true; we have that , so such that .
Algorithm 3: Decompose given by Equation (10) into Pauli-strings directly |
|
4. Full/Unrestricted Mixer
4.1. aka “Standard” Full Mixer
4.2. All-to-All Full Mixer
4.3. (Cyclic) Nearest Integer Full Mixer
4.4. Comparison and Optimality of Full Mixers
5. Constrained Mixers
5.1. “One-Hot” Aka “XY”-Mixer
5.1.1. Case
5.1.2. Case
5.1.3. The General Case
5.1.4. Trotterizations
5.2. General Cases
5.2.1. Example 1
5.2.2. Example 2
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E.G.; Venturelli, D.; Biswas, R. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 2019, 12, 34. [Google Scholar] [CrossRef]
- Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [Google Scholar] [CrossRef]
- Hatano, N.; Suzuki, M. Finding exponential product formulas of higher orders. In Quantum Annealing and Other Optimization Methods; Springer: Berlin/Heidelberg, Germany, 2005; pp. 37–68. [Google Scholar]
- Trotter, H.F. On the product of semi-groups of operators. Proc. Am. Math. Soc. 1959, 10, 545–551. [Google Scholar] [CrossRef]
- Kronsjö, L. Algorithms: Their Complexity and Efficiency; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Guerreschi, G.G.; Matsuura, A. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 2019, 9, 6903. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Moll, N.; Barkoutsos, P.; Bishop, L.S.; Chow, J.M.; Cross, A.; Egger, D.J.; Filipp, S.; Fuhrer, A.; Gambetta, J.M.; Ganzhorn, M.; et al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 2018, 3, 030503. [Google Scholar] [CrossRef]
- Bittel, L.; Kliesch, M. Training variational quantum algorithms is NP-hard—Even for logarithmically many qubits and free fermionic systems. Phys. Rev. Lett. 2021, 127, 120502. [Google Scholar] [CrossRef]
- Wang, S.; Fontana, E.; Cerezo, M.; Sharma, K.; Sone, A.; Cincio, L.; Coles, P.J. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.K.; Zhu, C.; Liu, G.; Wang, X. Fundamental limitations on optimization in variational quantum algorithms. arXiv 2022, arXiv:2205.05056. [Google Scholar]
- Zhu, L.; Tang, H.L.; Barron, G.S.; Mayhall, N.J.; Barnes, E.; Economou, S.E. An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv 2020, arXiv:2005.10258. [Google Scholar]
- Bravyi, S.; Kliesch, A.; Koenig, R.; Tang, E. Obstacles to state preparation and variational optimization from symmetry protection. arXiv 2019, arXiv:1910.08980. [Google Scholar]
- Egger, D.J.; Marecek, J.; Woerner, S. Warm-starting quantum optimization. arXiv 2020, arXiv:2009.10095. [Google Scholar] [CrossRef]
- Vikstål, P.; Grönkvist, M.; Svensson, M.; Andersson, M.; Johansson, G.; Ferrini, G. Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem. Phys. Rev. Appl. 2020, 14, 034009. [Google Scholar] [CrossRef]
- Fuchs, F.G.; Kolden, H.; Aase, N.H.; Sartor, G. Efficient Encoding of the Weighted MAX k-CUT on a Quantum Computer Using QAOA. SN Comput. Sci. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Hadfield, S.; Wang, Z.; Rieffel, E.G.; O’Gorman, B.; Venturelli, D.; Biswas, R. Quantum approximate optimization with hard and soft constraints. In Proceedings of the Second International Workshop on Post Moores Era Supercomputing, Denver, CO, USA, 12–17 November 2017; pp. 15–21. [Google Scholar]
- Wang, Z.; Rubin, N.C.; Dominy, J.M.; Rieffel, E.G. XY mixers: Analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 2020, 101, 012320. [Google Scholar] [CrossRef]
- Lieb, E.; Schultz, T.; Mattis, D. Two soluble models of an antiferromagnetic chain. Ann. Phys. 1961, 16, 407–466. [Google Scholar] [CrossRef]
- Cook, J.; Eidenbenz, S.; Bärtschi, A. The quantum alternating operator ansatz on maximum k-vertex cover. In Proceedings of the 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 12–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 83–92. [Google Scholar]
- Hen, I.; Sarandy, M.S. Driver Hamiltonians for constrained optimization in quantum annealing. Phys. Rev. A 2016, 93, 062312. [Google Scholar] [CrossRef]
- Hen, I.; Spedalieri, F.M. Quantum annealing for constrained optimization. Phys. Rev. Appl. 2016, 5, 034007. [Google Scholar] [CrossRef]
- Sakurai, J.J. Advanced Quantum Mechanics; Pearson: Upper Saddle River, NJ, USA, January 1967. [Google Scholar]
- Gokhale, P.; Angiuli, O.; Ding, Y.; Gui, K.; Tomesh, T.; Suchara, M.; Martonosi, M.; Chong, F.T. Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. arXiv 2019, arXiv:1907.13623. [Google Scholar]
- Gui, K.; Tomesh, T.; Gokhale, P.; Shi, Y.; Chong, F.T.; Martonosi, M.; Suchara, M. Term grouping and travelling salesperson for digital quantum simulation. arXiv 2020, arXiv:2001.05983. [Google Scholar]
Algorithm 1 | Algorithm 2 | Algorithm 3 | |
---|---|---|---|
runtime | |||
memory |
n | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ham | # | #CX | ||||||||||||||||
2 | 8 | 24 | 64 | 160 | 384 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | |
2 | 16 | 96 | 512 | 2560 | 12,288 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 2 | 10 | 34 | 98 | 258 | |
2 | 12 | 28 | 60 | 124 | 252 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 12 | 44 | 132 | 356 | |
2 | 8 | 22 | 52 | 114 | 240 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 4 | 20 | 68 | 196 | 516 | |
2 | 16 | 96 | 512 | 2560 | 12,288 | 2 | 4 | 6 | 8 | 10 | 12 | 0 | 10 | 86 | 552 | 3260 | 17,650 |
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 |
---|---|---|---|---|---|---|---|---|---|
12 · 2 | 32 · 3 | 80 · 44 | 192 · 54 | 448 · 64 | 1024 · 74 | 2304 · 84 | 5120 · 94 | 245,760 · 144 | |
12 · 3 | 32 · 4 | 80 · 54 | 192 · 64 | 448 · 74 | 1024 · 84 | 2304 · 94 | 5120 · 10 | 245,760 · 154 | |
12 · 3 | 32 · 6 | 80 · 10 | 192 · 15 | 448 · 21 | 1024 · 28 | 2304 · 36 | 5120 · 45 | 245,760 · 105 | |
4 · 2 | 4 · 3 | 4 · 44 | 4 · 54 | 4 · 64 | 4 · 74 | 4 · 84 | 4 · 94 | 4 · 144 | |
4 · 3 | 4 · 4 | 4 · 54 | 4 · 64 | 4 · 74 | 4 · 84 | 4 · 94 | 4 · 10 | 4 · 154 | |
4 · 3 | 4 · 6 | 4 · 10 | 4 · 15 | 4 · 21 | 4 · 28 | 4 · 36 | 4 · 45 | 4 · 105 |
12 | 8 | 16 | |
20 | 2 | 24 | |
24 | 20 | 28 | |
6 | 20 | 28 | |
28 | 24 | 8 | |
20 | 16 | 24 | |
28 | 24 | 8 | |
6 | 20 | 28 | |
24 | 20 | 28 | |
20 | 16 | 24 | |
20 | 2 | 24 |
96 | 64 | 112 | 80 | 80 | 112 | 96 | 64 | 64 | 96 | 96 | 96 | 112 | 112 | 80 | |
160 | 24 | 176 | 144 | 144 | 176 | 160 | 128 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
208 | 176 | 48 | 192 | 192 | 224 | 208 | 176 | 176 | 208 | 208 | 208 | 224 | 224 | 192 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
208 | 176 | 224 | 192 | 192 | 224 | 208 | 176 | 176 | 208 | 208 | 208 | 224 | 48 | 192 | |
208 | 176 | 224 | 192 | 192 | 224 | 208 | 176 | 176 | 208 | 208 | 208 | 48 | 224 | 192 | |
192 | 160 | 208 | 176 | 176 | 208 | 192 | 160 | 160 | 40 | 192 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
176 | 144 | 192 | 160 | 160 | 192 | 176 | 144 | 144 | 176 | 176 | 176 | 192 | 192 | 32 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 24 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
176 | 144 | 192 | 32 | 160 | 192 | 176 | 144 | 144 | 176 | 176 | 176 | 192 | 192 | 160 | |
192 | 160 | 208 | 176 | 176 | 208 | 192 | 160 | 160 | 192 | 40 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
176 | 144 | 192 | 160 | 160 | 192 | 176 | 144 | 144 | 176 | 176 | 176 | 192 | 192 | 32 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 24 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 128 | 24 | 160 | 160 | 160 | 176 | 176 | 144 | |
176 | 144 | 192 | 160 | 32 | 192 | 176 | 144 | 144 | 176 | 176 | 176 | 192 | 192 | 160 | |
192 | 160 | 208 | 176 | 176 | 208 | 192 | 160 | 160 | 192 | 192 | 40 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 128 | 24 | 160 | 160 | 160 | 176 | 176 | 144 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
40 | 160 | 208 | 176 | 176 | 208 | 192 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
208 | 176 | 224 | 192 | 192 | 48 | 208 | 176 | 176 | 208 | 208 | 208 | 224 | 224 | 192 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
192 | 160 | 208 | 176 | 176 | 208 | 48 | 160 | 160 | 192 | 192 | 192 | 208 | 208 | 176 | |
160 | 24 | 176 | 144 | 144 | 176 | 160 | 128 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
160 | 24 | 176 | 144 | 144 | 176 | 160 | 128 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
176 | 144 | 192 | 160 | 160 | 192 | 176 | 144 | 144 | 176 | 176 | 176 | 192 | 192 | 32 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 24 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
160 | 24 | 176 | 144 | 144 | 176 | 160 | 128 | 128 | 160 | 160 | 160 | 176 | 176 | 144 | |
160 | 128 | 176 | 144 | 144 | 176 | 160 | 128 | 24 | 160 | 160 | 160 | 176 | 176 | 144 | |
224 | 192 | 240 | 208 | 208 | 240 | 224 | 192 | 192 | 224 | 224 | 224 | 240 | 240 | 208 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, F.G.; Lye, K.O.; Møll Nilsen, H.; Stasik, A.J.; Sartor, G. Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm. Algorithms 2022, 15, 202. https://doi.org/10.3390/a15060202
Fuchs FG, Lye KO, Møll Nilsen H, Stasik AJ, Sartor G. Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm. Algorithms. 2022; 15(6):202. https://doi.org/10.3390/a15060202
Chicago/Turabian StyleFuchs, Franz Georg, Kjetil Olsen Lye, Halvor Møll Nilsen, Alexander Johannes Stasik, and Giorgio Sartor. 2022. "Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm" Algorithms 15, no. 6: 202. https://doi.org/10.3390/a15060202
APA StyleFuchs, F. G., Lye, K. O., Møll Nilsen, H., Stasik, A. J., & Sartor, G. (2022). Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm. Algorithms, 15(6), 202. https://doi.org/10.3390/a15060202