Parameter Estimation, Robust Controller Design and Performance Analysis for an Electric Power Steering System
<p>Electric power steering system model.</p> "> Figure 2
<p>Bode plots of the SRIV identification algorithm with a signal-to-noise ratio of 30 dB.</p> "> Figure 3
<p>Bode plots of the proposed identification algorithms compared with that of the actual model.</p> "> Figure 4
<p>Inputs of the motor during the identification simulation.</p> "> Figure 5
<p>Comparison of the simulation data and test data using the SRIV algorithm.</p> "> Figure 6
<p>Step response for identifying the motor model at different sampling rates.</p> "> Figure 7
<p>Comparison of the experimental and identification results at sampling rate of 800 Hz.</p> "> Figure 8
<p>Bode plot of the identified motor under different sampling rates.</p> "> Figure 9
<p>Bode plot of the identified motor under different clock times.</p> "> Figure 10
<p>Bode plot using different identification algorithms.</p> "> Figure 11
<p>Comparison of the test data and identification data.</p> "> Figure 12
<p>Time profiles of the assist motor current and voltage.</p> "> Figure 13
<p>Verification of the identification model.</p> "> Figure 14
<p>Bode plot of the EPS using different sampling rates.</p> "> Figure 15
<p>Bode plot of the EPS using different identification algorithms.</p> "> Figure 16
<p>Input signal of the identification simulation.</p> "> Figure 17
<p>Comparison of the SRIV simulation data and test data.</p> "> Figure 18
<p>Step response of EPS for sampling rates of 800 Hz and 1 kHz.</p> "> Figure 19
<p>Bode plot of the EPS using different identification algorithms.</p> "> Figure 20
<p>Input and output of the EPS identification system.</p> "> Figure 21
<p>Verification of the identified EPS system.</p> "> Figure 22
<p>Correlation of the assist torque and driver torque at different vehicle speeds.</p> "> Figure 23
<p>Loop-shaping controller diagram.</p> "> Figure 24
<p>Desired loop gain.</p> "> Figure 25
<p>Diagram of the loop-shaping controller for EPS.</p> "> Figure 26
<p>Overall block diagram of the EPS electric motor parameter identification experiment platform.</p> "> Figure 27
<p>Block diagram of the verification experiment platform for the EPS control algorithm.</p> "> Figure 28
<p>EPS test bench.</p> "> Figure 29
<p>Comparison of the assist torque response using the PID controller and loop-shaping controller.</p> "> Figure 30
<p>Actual torque at 40 km/h velocity under the PID control algorithm.</p> "> Figure 31
<p>Actual torque at 20 km/h velocity under the proposed control algorithm.</p> "> Figure 32
<p>Actual assist characteristic curve under the PID control algorithm with different velocities.</p> "> Figure 33
<p>Actual assist characteristic curve using the proposed loop-shaping control algorithm with different velocities.</p> ">
Abstract
:1. Introduction
2. Operational Principle and Mathematical Model
2.1. Operational Principle
2.2. Mathematical Model
3. Background of the Algorithms
4. Identification Analysis of the Motor Parameters
4.1. Simulation Identification
4.2. Identification Experiment
5. Identification Analysis and Test Bench Simulation of the EPS System
5.1. Identification Analysis of the EPS System
5.2. Identification Experiment for the EPS System
6. Controller Design
- The sensitivity function:
- The complementary sensitivity function: . The loop-shaping gain:
7. EPS Test Bench
8. Verification of the EPS Control Algorithm
- Step 1.
- Establish the new model based on MATLAB/Simulink and configure the RTI interfaces, including the common I/O, PWM and AD modules.
- Step 2.
- Establish the control algorithm model for the EPS system, filter the collected analogue signals and compile and generate dSPACE executable SDF files.
- Step 3.
- Build the new experimental project in the Control Desk software of dSPACE. The generated SDF files are downloaded into the real-time dSPACE card via the Ethernet network. Finally, the overall EPS frame system is controlled in real time via the control panel of Control Desk.
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burton, A.W. Innovation drivers for electric power-assisted steering. IEEE Control Syst. 2003, 23, 30–39. [Google Scholar]
- He, Z.; Gu, M. Dynamic Research on Control Strategy of Electric Power Steering System. In Proceedings of the SAE International, World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012; pp. 30–39. [Google Scholar]
- Mahmoud, M.S.; Emzir, M.F. Unknown-input estimator-based controller design of electric power-assisted steering system. Control Theory Appl. IET 2012, 6, 2485–2492. [Google Scholar] [CrossRef]
- Liu, C.T.; Hwang, C.C.; Chiu, Y.W. Design of a coaxially magnetic-geared linear actuator for electric power steering system applications. IEEE Trans. Ind. Appl. 2017, 53, 2401–2408. [Google Scholar] [CrossRef]
- Kim, J.H.; Song, J.B. Control logic for an electric power steering system using assist motor. Mechatronics 2002, 12, 447–459. [Google Scholar] [CrossRef]
- Hassan, M.K.; Azubir, N.A.M.; Nizam, H.M.I.; Toha, S.F.; Ibrahim, B.S.K.K. Optimal design of electric power assisted steering system (EPAS) using GA-PID method. Procedia Eng. 2012, 2012, 614–621. [Google Scholar] [CrossRef]
- Bei, S.Y.; Chen, L.; Chen, B.L.; Chen, B.L.; Liu, H.M. On Fuzzy-Pid Integrated Control of Automotive Electric Power Steering and Semi-Active Suspension. In Proceedings of the 2nd International Symposium on Intelligent Information Technology Application, Shanghai, China, 20–22 December 2008; pp. 847–851. [Google Scholar]
- Gao, Z.; Wu, W.; Zheng, J.; Sun, Z. Electric Power Steering System Based on Fuzzy-Pid Control. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 3456–3459. [Google Scholar]
- Wei, W.; Yin, G.; Tian, D. Analysis on EPS Mechatronic Fuzzy-Pid Closed-Loop Control System. In Proceedings of the International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 3390–3393. [Google Scholar]
- Saifia, D.; Chadli, M.; Karimi, H.R.; Labiod, S. Fuzzy control for electric power steering system with assist motor current input constraints. J. Frankl. Inst. 2015, 35, 562–576. [Google Scholar] [CrossRef]
- Lin, F.J.; Hung, Y.C.; Ruan, K.C. An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 2014, 22, 1598–1611. [Google Scholar] [CrossRef]
- Wang, R.; Jing, H.; Hu, C.; Chadli, M.; Yan, F. Robust H∞ output-feedback yaw control for in-wheel motor driven electric vehicles with differential steering. Neurocomputing 2015, 173, 676–684. [Google Scholar] [CrossRef]
- Moradkhani, M.; Hairi-Yazdi, M.; Salamsi, F. H∞ loop-Shaping Control of an electric Power Steering System. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland, 4–7 September 2007; pp. 1–6. [Google Scholar]
- Gao, Z.; Yang, L.; Wang, H.; Li, X. Active Fault Tolerant Control of Electric Power Steering System with Sensor Fault. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July 2017; pp. 9630–9636. [Google Scholar]
- Ma, X.; Guo, Y.; Chen, L. Active disturbance rejection control for electric power steering system with assist motor variable mode. J. Frankl. Inst. 2018, 355, 614–621. [Google Scholar] [CrossRef]
- Lee, D.; Yi, K.; Chang, S. Robust steering-assist torque control of electric-power-assisted-steering systems for target steering wheel torque tracking. Mechatronics 2018, 49, 157–167. [Google Scholar] [CrossRef]
- Yang, T. A new control framework of electric power steering system based on admittance control. IEEE Trans. Control Syst. Technol. 2015, 23, 762–769. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, W. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle. Mech. Syst. Signal Process. 2018, 101, 389–404. [Google Scholar] [CrossRef]
- Anderson, B.D.O.; Moore, J.; Molinari, B.P. Linear optimal control. IEEE Trans. Syst. Man Cybern. 1999, 93, 614–621. [Google Scholar]
- Burl, J.B. Linear Optimal Control: H2 and H-Infinity Methods; Addison-Wesley Longman Press: Boston, MA, USA, 1998. [Google Scholar]
- Parmar, M.; Hung, J.Y. A sensorless optimal control system for an automotive electric power assist steering system. IEEE Trans. Ind. Electr. 2004, 51, 290–298. [Google Scholar] [CrossRef]
- Mehrabi, N.; Azad, N.L.; Mcphee, J. Optimal Disturbance Rejection Control Design for Electric Power Steering Systems. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 6584–6589. [Google Scholar]
- Shi, P.; Gao, S.; Miao, L.; Wang, H. Optimal Controller Design for Electric Power Steering System Based on LQG. In Proceedings of the International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009; pp. 1–4. [Google Scholar]
- Kapun, A.; Curkoviˇc, M.; Hace, A.; Jezernik, K. Identifying dynamic model parameters of a BLDC motor. Simul. Model. Pract. Theory 2008, 16, 1254–1265. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mech. Mach. Theory 2018, 122, 292–307. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Wang, J. H∞ observer design for LPV systems with uncertain measurements on scheduling variables: Application to an electric ground vehicle. IEEE/ASME Trans. Mechatron. 2016, 21, 1659–1670. [Google Scholar] [CrossRef]
- Wang, X.; Bi, F.; Du, H. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control. Mech. Syst. Signal Process. 2018, 2018, 16–35. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J. Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 2017, 66, 3685–3702. [Google Scholar] [CrossRef]
- Malti, R.; Victor, A.; Garnier, H. An optimal instrumental variable method for continuous-time fractional model identification. IFAC Proc. Vol. 2008, 41, 14379–14384. [Google Scholar] [CrossRef]
- Young, P.C. Parameter estimation for continuous-time models—Asurvey. Automatica 1981, 17, 23–29. [Google Scholar] [CrossRef]
- Ljung, L. Experiments with identification of continuous time models. IFAC Proc. Vol. 2009, 42, 1175–1180. [Google Scholar] [CrossRef]
- Cuvillon, L.; Laroche, E.; Garnier, H.; Jacques, G.; Michel, M.D.E. Continuous-time model identification of robot flexibilities for fast visual servoing. IFAC Proc. Vol. 2006, 39, 1264–1269. [Google Scholar] [CrossRef]
- Skogestad, S.; Postlethwaite, I. Mulivariable Feedback Control: Analysis and Design; John Wiley & Sons Press: New York, NY, USA, 2001. [Google Scholar]
Motor Parameters | Value | Unit |
---|---|---|
Armature resistance Rm | 0.35 | Ω |
Armature inductance Lm | 0.001 | H |
Motor back EMF constant Kt | 0.0433 | V·s |
Motor rotor inertia Jm | 0.00018 | kg·m2 |
Hydraulic friction coefficient of Motor rotor Bm | 0.0034 | N·m·s |
nb | nf | nk | RT2 | YIC | Cond | AIC |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0.99891 | −10.831 | 27.293 | −5.1153 |
1 | 4 | 0 | 0.96856 | −10.557 | 3.7446 × 109 | −1.7471 |
3 | 3 | 0 | 0.99893 | −9.4845 | 5.0471 × 107 | −5.1219 |
2 | 1 | 0 | 0.99891 | −6.8284 | 1170.7 | −5.1136 |
2 | 2 | 0 | 0.99897 | −11.3369 | 5.1443 × 105 | −5.1377 |
Identification Results | Motor Parameter | |||
---|---|---|---|---|
Sampling Rate (Hz) | Amplitude (%) | Clock Time (ms) | Resistance (Ω) | Inductance (H) |
10k | 20 50 | 200 | −0.374 | 0.0020 |
5k | 20 50 | 200 | −0.759 | 0.0023 |
1k | 20 60 | 200 | 0.096 | 0.0015 |
800 | 20 60 | 200 | 0.101 | 0.0014 |
800 | −60 60 | 500 | 0.281 | 0.0015 |
Identification Results | Evaluation Index | |||
---|---|---|---|---|
Sampling Rate (Hz) | Amplitude (%) | Clock Time (ms) | RT2 | YIC |
700 | 20 60 | 200 | 0.873 | −9.627 |
800 | 20 60 | 200 | 0.903 | −10.562 |
900 | 20 60 | 200 | 0.875 | −10.128 |
800 | −60 60 | 200 | 0.939 | −11.426 |
800 | −60 60 | 400 | 0.954 | −11.882 |
800 | −60 60 | 500 | 0.957 | −11.892 |
800 | −60 60 | 600 | 0.981 | −13.077 |
Identification Algorithm | RT2 | MSE | FIT (%) |
---|---|---|---|
SRIV | 0.957 | 4.643 | 79.01 |
IVSVF | 0.913 | 9.217 | 70.42 |
LSSVF | 0.837 | 17.4 | 59.36 |
nb | nf | nk | RT2 | YIC | Cond | AIC |
---|---|---|---|---|---|---|
3 | 3 | 0 | 0.97269 | −12.621 | 1.6182 × 106 | 1.0582 |
1 | 1 | 0 | 0.91941 | −12.304 | 26.673 | 2.1396 |
2 | 2 | 0 | 0.98023 | −12.598 | 7255.8 | 1.5362 |
3 | 2 | 0 | 0.9628 | −11.754 | 8.3843 × 105 | 1.3774 |
1 | 2 | 0 | 0.93298 | −10.875 | 28,244 | 1.9562 |
EPS Parameters | Value | Unit |
---|---|---|
Steering wheel moment of inertia Jc | 0.04 | kg·m2 |
Torsional stiffness Kc | 115 | N·m/rad |
Steering wheel damping Bc | 0.325 | N·m/(rad/s) |
Rack and wheel assembly mass Mr | 32 | kg |
Rack damping Br | 653.2 | N/(m/s) |
Tire or rack centring spring rate Kr | 91,061 | N/m |
Pinion radius rp | 0.0071 | m |
nb | nf | nk | RT2 | YIC | Cond | AIC |
---|---|---|---|---|---|---|
1 | 2 | 0 | 0.99843 | −16.755 | 3527.9 | −22.109 |
1 | 4 | 0 | 0.99886 | −18.755 | 78,870 | −22.425 |
4 | 3 | 0 | 0.99855 | −10.839 | 9.6734 × 1010 | −22.184 |
2 | 2 | 0 | 0.99845 | −10.794 | 47,544 | −22.125 |
3 | 3 | 0 | 0.99859 | −10.478 | 3.8167 × 108 | −22.21 |
Structure of the EPS System | Sampling Rate (Hz) | RT2 | YIC |
---|---|---|---|
nb = 3, nf = 4, nk = 0 | 100 | 0.975 | −9.990 |
500 | 0.965 | −10.014 | |
800 | 0.984 | −12.265 | |
900 | 0.981 | −12.251 | |
1000 | 0.981 | −11.155 |
Identification Algorithm | RT2 | MSE | FIT (%) |
---|---|---|---|
SRIV | 0.981 | 0.204 | 86.28 |
IVSVF | 0.970 | 0.475 | 79.07 |
LSSVF | 0.929 | 0.765 | 73.43 |
Controller | Omax (%) | tris (s) | tset (s) |
---|---|---|---|
PID controller | 23.4 | 0.056 | 0.178 |
Loop-shaping controller | 8.7 | 0.064 | 0.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.G.; Guo, X.; Zhang, C.; Tran, X.K. Parameter Estimation, Robust Controller Design and Performance Analysis for an Electric Power Steering System. Algorithms 2019, 12, 57. https://doi.org/10.3390/a12030057
Nguyen VG, Guo X, Zhang C, Tran XK. Parameter Estimation, Robust Controller Design and Performance Analysis for an Electric Power Steering System. Algorithms. 2019; 12(3):57. https://doi.org/10.3390/a12030057
Chicago/Turabian StyleNguyen, Van Giao, Xuexun Guo, Chengcai Zhang, and Xuan Khoa Tran. 2019. "Parameter Estimation, Robust Controller Design and Performance Analysis for an Electric Power Steering System" Algorithms 12, no. 3: 57. https://doi.org/10.3390/a12030057