Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets †
<p>First geometrical interpretation—first form.</p> "> Figure 2
<p>First geometrical interpretation—second form.</p> "> Figure 3
<p>V. Atanassova’s geometrical interpretation.</p> "> Figure 4
<p>Second geometrical interpretation.</p> "> Figure 5
<p>Third geometrical interpretation.</p> "> Figure 6
<p>Fourth geometrical interpretation, where <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>=</mo> <mi>π</mi> <msub> <mi>μ</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>β</mi> <mo>=</mo> <mi>π</mi> <msub> <mi>ν</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and here <math display="inline"> <semantics> <mrow> <mi>π</mi> <mo>=</mo> <mn>3</mn> <mo>.</mo> <mn>14</mn> <mo>⋯</mo> </mrow> </semantics> </math>.</p> "> Figure 7
<p>S. Danchev’s geometrical interpretation.</p> "> Figure 8
<p>Szmidt and Kacprzyk’s geometrical interpretation.</p> "> Figure 9
<p>Fifth geometrical interpretation.</p> "> Figure 10
<p>Central point in the fifth geometrical interpretation.</p> "> Figure 11
<p>Geometrical interpretation of a T1FS element.</p> ">
Abstract
:1. Introduction
2. What Is There in IFS Theory That Has No Analogue in T1FS Theory?
3. What in IFS Theory Can Be Transformed to T1FS Theory?
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Goguen, J. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–174. [Google Scholar] [CrossRef]
- Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets Research Report PAS 431; Institute of Computer Science, Polish Academy of Sciences: Warsaw, Poland, 1981. [Google Scholar]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. In Proceedings of the VII ITKR’s Session, Sofia, Bulgaria, 7–9 June 1983. (Deposed in Central Sci.- Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgaria); reprinted in Int. J. Bioautom. 2016, 20, S1–S6. [Google Scholar]
- Castillo, O.; Melin, P. Type-2 Fuzzy Logic: Theory and Applications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Gonzalez, C.I.; Melin, P.; Castro, J.R.; Castillo, O. Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ponce-Cruz, P.; Molina, A.; MacCleery, B. Fuzzy Logic Type-1 and Type-2 Based on LabVIEW FPGA; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Kaufmann, A. Introduction a La Theorie Des Sour-Ensembles Flous; Masson: Paris, France, 1977. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Danchev, S. A new geometrical interpretation of some concepts in the intuitionistic fuzzy logics. Notes Intuit. Fuzzy Sets 1995, 1, 116–118. [Google Scholar]
- Szmidt, E. Applications of Intuitionistic Fuzzy Sets in Decision Making. Ph.D. Thesis, Technical University, Sofia, Bulgaria, 2000. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In Proceedings of the Tenth International Conference IPMU’2004, Perugia, Italy, 4–9 July 2004; Volume 2, pp. 1405–1412. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. New measures of entropy for intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 2005, 11, 12–20. [Google Scholar]
- Atanassov, K. New geometrical interpretation of the intuitionistic fuzzy pairs. Notes Intuit. Fuzzy Sets 2016, 22, 12–18. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Logics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Atanassov, K.; Szmidt, E.; Kacprzyk, J. New Fodor’s type of intuitionistic fuzzy implication and negation. Notes Intuit. Fuzzy Sets 2016, 22, 1–8. [Google Scholar]
- Atanassov, K.; Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy implication → 187. Notes Intuit. Fuzzy Sets 2017, 23, 37–43. [Google Scholar]
- Atanassov, K.; Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy implication → 188. Notes Intuit. Fuzzy Sets 2017, 23, 6–13. [Google Scholar]
- Atanassova, L. Intuitionistic fuzzy implication → 189. Notes Intuit. Fuzzy Sets 2017, 23, 14–20. [Google Scholar]
- Brouwer, L.E.J. Collected Works; North Holland: Amsterdam, The Netherlands, 1975; Volume 1. [Google Scholar]
- Van Dalen, D. (Ed.) Brouwer’s Cambridge Lectures on Intuitionism; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Atanassov, K.; Gargov, G. Intuitionistic fuzzy logic operators of a set theoretical type. In Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, 28–30 September 1994; pp. 39–42. [Google Scholar]
- Atanassova, V.; Doukovska, L. Compass-and-straightedge constructions in the intuitionistic fuzzy interpretational triangle: Two new intuitionistic fuzzy modal operators. Notes Intuit. Fuzzy Sets 2017, 23, 1–7. [Google Scholar]
- Kuratowski, K. Topology; Academies Press: New York, NY, USA, 1966; Volume 1. [Google Scholar]
- Yosida, K. Functional Analysis; Springer-Verlag: Berlin, Germany, 1965. [Google Scholar]
- Atanassov, K. Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Preprint IM-MFAIS-1-89, Sofia, Bulgaria, 1989; reprinted in Int. J. Bioautom. 2016, 20, S27–S42.
- Gorzalczany, M. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 1987, 21, 1–17. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K.T. Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. Algorithms 2017, 10, 106. https://doi.org/10.3390/a10030106
Atanassov KT. Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. Algorithms. 2017; 10(3):106. https://doi.org/10.3390/a10030106
Chicago/Turabian StyleAtanassov, Krassimir T. 2017. "Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets" Algorithms 10, no. 3: 106. https://doi.org/10.3390/a10030106