Contract-Based Incentive Mechanism for Mobile Crowdsourcing Networks
<p>Mobile crowdsourcing network (MCN).</p> "> Figure 2
<p>Contract-based incentive mechanism for mobile crowdsourcing.</p> "> Figure 3
<p>Mobile users’ (MUs’) optimal contract design with various <math display="inline"> <semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics> </math> for fixed <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>4</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Mobile users’ (MUs’) optimal utility with different types of effort-incentive design.</p> "> Figure 5
<p>Mobile users’ (MUs’) optimal contract design with the crowdsourcing cost coefficient <math display="inline"> <semantics> <msub> <mi>c</mi> <mi>i</mi> </msub> </semantics> </math> for fixed <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>S</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>θ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Mobile users’ (MUs’) optimal bonus coefficient <math display="inline"> <semantics> <msup> <mi>β</mi> <mo>*</mo> </msup> </semantics> </math> for fixed <math display="inline"> <semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Service provider’s (SP’s) optimal expected utility for fixed <math display="inline"> <semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Comparison between the service provider’s (SP’s) optimal expected utility with the various incentive mechanisms for fixed <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>M</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>1</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>.</p> ">
Abstract
:1. Introduction
2. System Model for Crowdsourcing Incentive Mechanism
2.1. Utility of Mobile Users
2.2. Utility of Service Provider
2.3. Problem Formulation
3. Contract-Based Crowdsourcing Incentive Mechanism
4. Analysis and Discussion
5. Numerical Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, K.; Zhang, K.; Ren, J.; Shen, X. Security and privacy in mobile crowdsourcing networks: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 75–81. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhang, K.; Shen, X. Exploiting mobile crowdsourcing for pervasive cloud services: Challenges and solutions. IEEE Commun. Mag. 2015, 53, 98–105. [Google Scholar] [CrossRef]
- Franklin, M.; Kossmann, D.; Kraska, T.; Ramesh, S.; Xin, R. Crowddb: Answering queries with crowdsourcing. In Proceedings of the ACM SIGMOD, Athens, Greece, 12–16 June 2011; pp. 61–72. [Google Scholar]
- Fernando, N.; Loke, S.; Rahayu, W.; Wenny, W. Honeybee: A programming framework for mobile crowd computing. In Proceedings of the International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, Tokyo, Japan, 2–4 December 2013; pp. 224–236. [Google Scholar]
- Koukoumidis, E.; Peh, S.; Martonosi, M. Signalguru: Leveraging mobile phones for collaborative traffic signal schedule advisory. In Proceedings of the ACM MobiSys, Bethesda, MD, USA, 28 June–1 July 2011; pp. 127–140. [Google Scholar]
- Ra, M.; Liu, B.; Porta, T.; Govindan, R. Medusa: A programming framework for crowd-sensing applications. In Proceedings of the ACM MobiSys, Ambleside, UK, 25–29 June 2012; pp. 337–350. [Google Scholar]
- Chen, P.; Cheng, S.; Ting, P.; Lien, C.; Chu, F. When crowdsourcing meets mobile sensing: A social network perspective. IEEE Commun. Mag. 2015, 53, 157–163. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Sun, W.; Liu, Y.; Tang, S.; Xing, K.; Mao, X. Incentives for mobile crowd sensing: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 54–67. [Google Scholar] [CrossRef]
- Magerkurth, C.; Cheok, A.; Mandryk, R.; Nilsen, T. Pervasive games: Bringing computer entertainment back to the real world. ACM Comput. Entertain. 2005, 3, 4. [Google Scholar] [CrossRef]
- Avouris, N.; Yiannoutsou, N. A review of mobile location-based games for learning across physical and virtual spaces. J. Univ. Comput. Sci. 2012, 18, 2120–2142. [Google Scholar]
- Luo, T.; Tham, C. Fairness and social welfare in incentivizing participatory sensing. In Proceedings of the IEEE SECON, Seoul, Korea, 18–21 June 2012; pp. 425–433. [Google Scholar]
- Lan, K.; Chou, C.; Wang, H. An incentive-based framework for vehicle-based mobile sensing. Procedia Comput. Sci. 2012, 10, 1152–1157. [Google Scholar] [CrossRef]
- Chen, P.; Ao, W.; Lin, S.; Chen, K. Reciprocal spectrum sharing game and mechanism in cellular systems with cognitive radio users. In Proceedings of the IEEE GLOBECOM Workshops, Houston, TX, USA, 5–9 December 2011; pp. 981–985. [Google Scholar]
- Yang, D.; Xue, G.; Fang, X.; Tang, J. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing. In Proceedings of the ACM Mobicom, Istanbul, Turkey, 22–26 August 2012; pp. 173–184. [Google Scholar]
- Zhang, X.; Yang, Z.; Zhou, Z.; Cai, H.; Chen, L.; Li, X. Free market of crowdsourcing: Incentive mechanism design for mobile sensing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 3190–3200. [Google Scholar] [CrossRef]
- Zhao, D.; Li, X.; Ma, H. Budget-feasible online incentive mechanisms for crowdsourcing tasks truthfully. IEEE ACM Trans. Netw. 2016, 24, 647–661. [Google Scholar] [CrossRef]
- Aghion, P.; Bolton, P. An incomplete contracts approach to financial contracting. Rev. Econ. Stud. 1992, 59, 473–494. [Google Scholar] [CrossRef]
- Duan, L.; Gao, L.; Huang, J. Cooperative spectrum sharing: A contract-based approach. IEEE Trans. Mob. Comput. 2014, 13, 174–187. [Google Scholar] [CrossRef]
- Ho, C.; Slivkins, A.; Vaughan, J. Adaptive contract design for crowdsourcing markets: Bandit algorithms for repeated principal-agent problems. J. Artif. Intell. Res. 2016, 55, 317–359. [Google Scholar]
- Zhao, N.; Wu, M.; Xiong, W.; Liu, C. Cooperative communication in cognitive radio networks under asymmetric information: A contract-theory based approach. Int. J. Distrib. Sens. Netw. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Zhao, N.; Wu, M.; Xiong, W.; Liu, C. Optimal contract design for cooperative relay incentive mechanism under moral hazard. J. Electr. Comput. Eng. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Zhao, N.; Chen, Y.; Liu, R.; Wu, M.; Xiong, W. Monitoring strategy for relay incentive mechanism in cooperative communications networks. Comput. Electr. Eng. 2017, 60, 14–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Y.; Liu, L.; Pan, M.; Dawy, Z.; Han, Z. Incentive mechanism in crowdsourcing with moral hazard. In Proceedings of the IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 9–12 March 2015; pp. 2085–2090. [Google Scholar]
- Chavas, J. Risk analysis in theory and practice. Risk Anal. Theor. Pract. 2004, 2004, 231–235. [Google Scholar]
- Gibbons, R. Incentives between firms (and within). Manag. Sci. 2005, 51, 2–17. [Google Scholar] [CrossRef]
Parameters | Settings |
---|---|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Fan, M.; Tian, C.; Fan, P. Contract-Based Incentive Mechanism for Mobile Crowdsourcing Networks. Algorithms 2017, 10, 104. https://doi.org/10.3390/a10030104
Zhao N, Fan M, Tian C, Fan P. Contract-Based Incentive Mechanism for Mobile Crowdsourcing Networks. Algorithms. 2017; 10(3):104. https://doi.org/10.3390/a10030104
Chicago/Turabian StyleZhao, Nan, Menglin Fan, Chao Tian, and Pengfei Fan. 2017. "Contract-Based Incentive Mechanism for Mobile Crowdsourcing Networks" Algorithms 10, no. 3: 104. https://doi.org/10.3390/a10030104