A Novel Framework to Study the Role of Ground and Fumed Silica Fillers in Suppressing DC Erosion of Silicone Rubber Outdoor Insulation
<p>+DC inclined plane-tracking and erosion test (IPT) setup with the leakage current acquisition system.</p> "> Figure 2
<p>Dry-arc resistance test with images of the test during the 4 cycles of operation.</p> "> Figure 3
<p>(<b>a</b>) +DC IPT erosion depth outcomes for the tested composites. (<b>b</b>) Images of the post tested +DC IPT composite specimens.</p> "> Figure 4
<p>(<b>a</b>) Root-mean-square (RMS) leakage current for a GS10 filled silicone rubber (SiR) sample during the +DC IPT and (<b>b</b>) corresponding statistical boxplot representation for the first 12 20-min time intervals, first 240 min, of the test.</p> "> Figure 5
<p>Statistical boxplot outcomes for selected samples of the +DC IPT tested composites during the first 12 20-min time intervals of the test.</p> "> Figure 6
<p>(<b>a</b>) Thermogravimetric analysis (TGA) for the prepared composites and the unfilled SiR in an N<sub>2</sub> atmosphere. (<b>b</b>) Corresponding differential thermogravimetric analysis (DTGA) plot for the silica filled composites. (<b>c</b>) DTA for the prepared composites in an air atmosphere.</p> "> Figure 6 Cont.
<p>(<b>a</b>) Thermogravimetric analysis (TGA) for the prepared composites and the unfilled SiR in an N<sub>2</sub> atmosphere. (<b>b</b>) Corresponding differential thermogravimetric analysis (DTGA) plot for the silica filled composites. (<b>c</b>) DTA for the prepared composites in an air atmosphere.</p> "> Figure 7
<p>(<b>a</b>) Scanning electron microscopy (SEM) images for the TGA residue for the SiR + 30 wt% GS10 and (<b>b</b>) TGA residue for the SiR + 5 wt% FS07 under an N<sub>2</sub> atmosphere.</p> "> Figure 8
<p>Microscopic images of dry-arc resistance post-tested samples at a magnification of 50 for (<b>a</b>) SiR + 10 wt% GS10 and (<b>b</b>) SiR + 5 wt% FS07 composites, and SEM imaging at a magnification of 15 k for (<b>c</b>) the SiR + 30 wt% GS10 and (<b>d</b>) SiR + 5 wt% FS07 composites.</p> "> Figure 9
<p>SEM imaging at a magnification of 15 k for (<b>a</b>) the SiR + 30 wt% GS10 and (<b>b</b>) SiR + 5 wt% FS07 composites tested using the +DC IPT.</p> "> Figure 10
<p>Surface residue of (<b>a</b>) the SiR + 30 wt% GS10 and (<b>b</b>) SiR + 5 wt%FS07 composites tested using the dry-arc resistance test for the first 10 s of cycle 1.</p> "> Figure 11
<p>Three-dimensional topography of the (<b>a</b>) the SiR + 30 wt% GS10 and (<b>b</b>) SiR + 5 wt% FS07 composites tested using the dry-arc resistance test. Corresponding waviness profiles for (<b>c</b>) SiR + 30 wt% GS10 and (<b>d</b>) SiR + 5 wt% FS07 composites.</p> "> Figure 12
<p>Statistical boxplot representation of 10 values of <span class="html-italic">R<sub>a</sub></span> for the sampled areas shown for each composite. The center bar represents the median value, the top and bottom box edges represent the 25th and 75th percentile values, respectively, while the top and bottom markers represent the minimum and maximum values of <span class="html-italic">R<sub>a</sub></span>, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Erosion Performance
3.2. Thermogravimetric–Differential Thermal Analysis
3.3. Residue Morphology Using the Dry-Arc Resistance Test
3.4. Surface Roughness of Eroded Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Li, M.; Zhang, Z.; Xu, T.; He, J.; Wang, H.; Li, G.; Rensselaer Polytechnic Institute; State Grid Corporation of China; China Electric Power Research Institute. Renewable energy transmission by HVDC across the continent: System challenges and opportunities. CSEE J. Power Energy Syst. 2017, 3, 353–364. [Google Scholar] [CrossRef]
- Fleeman, J.A.; Gutman, R.; Heyeck, M.; Bahrman, M.; Normark, B. EHV AC and HVDC transmission working together to integrate renewable power. In Proceedings of the 2009 CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale Renewable Resources into the Power Delivery System, Calgary, AB, Canada, 29–31 July 2009; p. 1. [Google Scholar]
- Meyer, L.; Jayaram, S.; Cherney, E.A. Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 620–630. [Google Scholar] [CrossRef]
- El-Hag, A.H.; Simon, L.C.; Jayaram, S.H.; Cherney, E.A. Erosion resistance of nano-filled silicone rubber. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 122–128. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Yu, S.; Zhang, Y.; Li, S. Tracking, erosion and thermal distribution of micro-AlN+ nano-SiO2 co-filled silicone rubber for high-voltage outdoor insulation. High Volt. 2018, 3, 289–294. [Google Scholar] [CrossRef]
- Ramirez, I.; Jarayam, S.; Cherney, E.A. Performance of silicone rubber nanocomposites in salt-fog, inclined plane, and laser ablation tests. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 206–213. [Google Scholar] [CrossRef]
- Ansorge, S.; Schmuck, F.; Papailiou, K.O. Improved silicone rubbers for the use as housing material in composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 209–217. [Google Scholar] [CrossRef]
- Bruce, G.P.; Rowland, S.M.; Krivda, A. Performance of silicone rubber in DC inclined plane tracking tests. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 521–532. [Google Scholar] [CrossRef]
- Cherney, E.A.; Gorur, R.S.; Krivda, A.; Jayaram, S.H.; Rowland, S.M.; Li, S.; Marzinotto, M.; Ghunem, R.A.; Ramirez, I. DC inclined-plane tracking and erosion test of insulating materials. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 211–217. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Jayaram, S.H.; Cherney, E.A. Suppression of silicone rubber erosion by alumina trihydrate and silica fillers from dry-band arcing under DC. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 14–20. [Google Scholar] [CrossRef]
- Koné, D.; Ghunem, R.A.; Cissé, L.; Hadjadj, Y.; El-Hag, A.H. Effect of residue formed during the AC and DC dry-band arcing on silicone rubber filled with natural silica. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1620–1626. [Google Scholar] [CrossRef]
- Alqudsi, A.; Ghunem, R.; David, E. Analyzing the Role of Filler Interface on the Erosion Performance of Filled RTV Silicone Rubber under DC Dry-band Arcing. IEEE Trans. Dielectr. Electr. Insul. (accepted; in press).
- IEC 60587. Electrical Insulating Materials Used Under Severe Ambient Conditions—Test Methods for Evaluating Resistance to Tracking and Erosion; IEC: Geneva, Switzerland, 2007. [Google Scholar]
- ASTM D 495-14. Standard Test Method for High-Voltage, Low-Current, Dry Arc Resistance of Solid Electrical Insulation; ASTM: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D7984-16. Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASME B46.1. Surface Texture (Surface Roughness, Waviness, and Lay); ASME: New York, NY, USA, 2019. [Google Scholar]
- Hshieh, F.-Y. Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers. Fire Mater. 1998, 22, 69–76. [Google Scholar] [CrossRef]
- Timpe, D.C., Jr. Silicone Rubber Flame Resistance. In Proceedings of the Hose Manufacturer Conference, Cleveland, OH, USA, 11–12 June 2007. [Google Scholar]
- Camino, G.; Lomakin, S.M.; Lageard, M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 2002, 43, 2011–2015. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.M.; Lazzari, M. Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Hermansson, A.; Hjertberg, T.; Sultan, B.-A. The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer. Fire Mater. 2003, 27, 51–70. [Google Scholar] [CrossRef]
- Delebecq, E.; Hamdani-Devarennes, S.; Raeke, J.; Cuesta, J.-M.L.; Ganachaud, F. High Residue Contents Indebted by Platinum and Silica Synergistic Action During the Pyrolysis of Silicone Formulations. ACS Appl. Mater. Interfaces 2011, 3, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-Cuesta, J.; Ganachaud, F. Flame retardancy of silicone-based materials. Polym. Degrad. Stabil. 2009, 94, 465–495. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Hoffman, M. Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2804–2815. [Google Scholar] [CrossRef]
- Kumagai, S.; Wang, X.; Yoshimura, N. Solid residue formation of RTV silicone rubber due to dry-band arcing and thermal decomposition. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 281–289. [Google Scholar] [CrossRef]
- Deng, H.; Hackam, R.; Cherney, E.A. Role of the size of particles of alumina trihydrate filler on the life of RTV silicone rubber coating. IEEE Trans. Power Deliv. 1995, 10, 1012–1024. [Google Scholar] [CrossRef]
- Kozako, M.; Higashikoji, M.; Tominaga, T.; Hikita, M.; Ueta, G.; Okabe, S.; Tanaka, T. Fabrication of silicone rubber nanocomposites and quantitative evaluation of dispersion state of nanofillers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1760–1767. [Google Scholar] [CrossRef]
Filler Type | Supplier | Filler Code | Particle Size (µm) | Specific Surface Area (m2/g) | Specific Gravity | Composite Formulation |
---|---|---|---|---|---|---|
Fumed silica | Sigma Aldrich | FS07 | 7 × 10−3 | 390 | 2.3 | SiR + 5 wt% FS07 |
Ground silica | US Silica | GS10 | 10.5 1 | NA 2 | 2.65 | SiR + 30 wt% GS10 |
Composite | Minimum k | Maximum k | Average k |
---|---|---|---|
SiR + 5 wt% FS07 | 0.169 | 0.205 | 0.188 |
SiR + 30 wt% GS10 | 0.400 | 0.430 | 0.409 |
Composite | WSiR (%) | Wfiller (%) | RTGA (%) | Rasm (%) | Radd (%) |
---|---|---|---|---|---|
SiR + 5 wt% FS07 | 95 | 5 | 71.4 | 18.8 | 52.6 |
SiR + 30 wt% GS10 | 70 | 30 | 73.2 | 40.2 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqudsi, A.Y.; Ghunem, R.A.; David, E. A Novel Framework to Study the Role of Ground and Fumed Silica Fillers in Suppressing DC Erosion of Silicone Rubber Outdoor Insulation. Energies 2021, 14, 3449. https://doi.org/10.3390/en14123449
Alqudsi AY, Ghunem RA, David E. A Novel Framework to Study the Role of Ground and Fumed Silica Fillers in Suppressing DC Erosion of Silicone Rubber Outdoor Insulation. Energies. 2021; 14(12):3449. https://doi.org/10.3390/en14123449
Chicago/Turabian StyleAlqudsi, Alhaytham Y., Refat A. Ghunem, and Eric David. 2021. "A Novel Framework to Study the Role of Ground and Fumed Silica Fillers in Suppressing DC Erosion of Silicone Rubber Outdoor Insulation" Energies 14, no. 12: 3449. https://doi.org/10.3390/en14123449
APA StyleAlqudsi, A. Y., Ghunem, R. A., & David, E. (2021). A Novel Framework to Study the Role of Ground and Fumed Silica Fillers in Suppressing DC Erosion of Silicone Rubber Outdoor Insulation. Energies, 14(12), 3449. https://doi.org/10.3390/en14123449