A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community
<p>The investigated system scheme.</p> "> Figure 2
<p>Strong variation is visible in terms of load fluctuation from observation of (<b>a</b>) a long time interval of one day, and from (<b>b</b>) a short time interval of 10 min.</p> "> Figure 3
<p>The cycle life versus depth of discharge (DoD; %) curve of the utilized LiFePO<sub>4</sub> battery (adapted from [<a href="#B26-energies-11-00469" class="html-bibr">26</a>]).</p> "> Figure 4
<p>Input MFs (state-of-charge (SOC) and variation of SOC(∆SOC)) as well as the output MF (charging ratio). MF: membership function; M: medium; S: small; MS: medium small; ML: medium large; L: large; NS: negatively small; PS: positively small; NL: negatively large; Z: zero; PL: positively large; CR: charging ratio.</p> "> Figure 5
<p>Rule table of the proposed fuzzy logic control (FLC) controller.</p> "> Figure 6
<p>Illustration of charging behavior from rule table.</p> "> Figure 7
<p>Illustration for optimized input MFs.</p> "> Figure 8
<p>Optimization flowchart.</p> "> Figure 9
<p>The simulated results of power profiles for an example day.</p> "> Figure 10
<p>Simulated results (<b>a</b>) percentage of achieving lowest cost (<b>b</b>) improvement space for normal fuzzy (FuzzyN) compared to Greedy and feed-in damping (FID) methods.</p> "> Figure 11
<p>Convergence of <span class="html-italic">gBest</span>.</p> "> Figure 12
<p>Additional costs compared to the perfect foresight method. FuzzyOP: optimized Fuzzy.</p> ">
Abstract
:1. Introduction
2. System Configuration
2.1. Load Consumption
2.2. Solar Power Generation
2.3. Battery Storage System
2.4. Financial Assumptions in the Scenario
3. Methods
3.1. Design of the Fuzzy Controller
3.2. Optimization of Fuzzy Membership Function
4. Analysis and Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Nomenclature
Abbreviations
PV | photovoltaics |
FLC | fuzzy logic controller |
DP | dynamic programming |
FIT | feed-in tariff |
SOC | state of charge |
SOH | state of health |
MPC | model predictive controller |
EA | evolutionary algorithm |
GA | genetic algorithm |
PCC | point of common coupling |
BESS | battery energy storage system |
BSS | battery storage system |
PSO | particle swarm optimization |
MF | membership function |
LFP | lithium–iron–phosphate (LiFePO4) battery |
EFC | equivalent full cycle |
DoD | depth of discharge |
CR | charging ratio |
S | small |
MS | medium small |
M | medium |
ML | medium large |
L | large |
NL | negatively large |
NS | negatively small |
Z | zero |
PS | positively small |
PL | positively large |
FID | Feed-in Damping method |
FuzzyN | Normal Fuzzy method |
FuzzyOP | Optimized Fuzzy method |
Variables, Parameters, and Constants
Pload | load consumption power (kW) |
PPV | photovoltaics generation power (kW) |
Pgrid | utility exchange power (kW) |
Pbattery | battery charging/discharging power (kW) |
Pnet | net power in PV-battery system (kW) |
Psurplus | surplus power; difference between power generation and load demand (kW) |
Pgrid-buy | power purchased from utility grid (kW) |
Pgrid-sell | power feed-in in utility grid (kW) |
Egrid-buy | energy purchased from utility grid (kWh) |
Egrid-sell | energy feed-in in utility grid (kWh) |
Cbuy | purchasing power tariff (€/kWh) |
Csell | feed-in power tariff (€/kWh) |
Cbattery | battery cost (€/kWh) |
SOHremain | remaining SOH (%) |
efficiency of power electronic device | |
PPE-RatedPower | rated power of power electronic device (kW) |
Pout | output power of power electronic device (kW) |
Cost | total operating cost for the system (€) |
i | particle number |
j | the element number in a particle |
t | iteration counter |
d | the number of elements in a particle |
xij | the current position of particle i in iteration t |
vij | the velocity of particle i in iteration t |
w | inertia weight parameter |
c1, c2 | acceleration constants |
r1, r2 | uniform random values in a range [0, 1] |
pBest | historical best record of particle itself |
gBest | best record of particle in the group |
wmax | maximum inertia weight |
wmin | minimum inertia weight |
itermax | the allowed maximum iteration |
iter | current iteration |
References
- Wirth, H.; Schneider, K. Recent facts about photovoltaics in germany. In Report from Fraunhofer Institute for Solar Energy Systems; Fraunhofer Institute for Solar Energy Systems: Freiburg, Germany, 2015. [Google Scholar]
- Bergner, J.; Weniger, J.; Tjaden, T.; Quaschning, V. Feed-in power limitation of grid-connected pv battery systems with autonomous forecast-based operation strategies. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 2363–2370. [Google Scholar]
- Feed-in Tariff for Electricity Generated from Renewable Energy in Japan. Available online: https://www.iea.org/policiesandmeasures/pams/japan/name-30660-en.php (accessed on 23 December 2017).
- Vetter, M. Residential Battery Systems-Operating Control Strategies beyond Self Consumption; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2015. [Google Scholar]
- Braun, M.; Büdenbender, K.; Magnor, D.; Jossen, A. Photovoltaic self-consumption in germany: Using lithium-ion storage to increase self-consumed photovoltaic energy. In Proceedings of the 24th European Photovoltaic Solar Energy Conference (PVSEC), Hamburg, Germany, 21–24 September 2009. [Google Scholar]
- Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef]
- Hou, R.; Nguyen, T.-T.; Kim, H.-M.; Song, H.; Qu, Y. An energy-based control strategy for battery energy storage systems: A case study on microgrid applications. Energies 2017, 10, 215. [Google Scholar] [CrossRef]
- Resch, M.; Ramadhani, B.; Bühler, J.; Sumper, A. Comparison of control strategies of residential PV storage systems. In Proceedings of the 9th International Renewable Energy Storage Conference and Exhibition (IRES 2015), Messe Düsseldorf, Germany, 9–11 March 2015; pp. 1–18. [Google Scholar]
- Li, J.; Danzer, M.A. Optimal charge control strategies for stationary photovoltaic battery systems. J. Power Sources 2014, 258, 365–373. [Google Scholar] [CrossRef]
- Nottrott, A.; Kleissl, J.; Washom, B. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems. Renew. Energy 2013, 55, 230–240. [Google Scholar] [CrossRef]
- Zeh, A.; Witzmann, R. Operational strategies for battery storage systems in low-voltage distribution grids to limit the feed-in power of roof-mounted solar power systems. Energy Procedia 2014, 46, 114–123. [Google Scholar] [CrossRef]
- Pereira, M.; de la Peña, D.M.; Limón, D. Robust economic model predictive control of a community micro-grid. Renew. Energy 2017, 100, 3–17. [Google Scholar] [CrossRef]
- Müller, J.; März, M.; Mauser, I.; Schmeck, H. Optimization of operation and control strategies for battery energy storage systems by evolutionary algorithms. In Proceedings of the European Conference on the Applications of Evolutionary Computation, Porto, Portugal, 30 March–1 April 2016; pp. 507–522. [Google Scholar]
- Fossati, J.P.; Galarza, A.; Martín-Villate, A.; Echeverría, J.M.; Fontán, L. Optimal scheduling of a microgrid with a fuzzy logic controlled storage system. Int. J. Electr. Power Energy Syst. 2015, 68, 61–70. [Google Scholar] [CrossRef]
- Saranya, S.; Sathyamoorthi, S.; Gandhiraj, R. A fuzzy logic based energy management system for a microgrid. ARPN J. Eng. Appl. Sci. 2015, 10, 2663–2669. [Google Scholar]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F.; Marietta, M.P. Optimal fuzzy logic ems design for residential grid-connected microgrid with hybrid renewable generation and storage. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 742–747. [Google Scholar]
- Sanseverino, E.R.; Di Silvestre, M.L.; Zizzo, G.; Gallea, R.; Quang, N.N. A self-adapting approach for forecast-less scheduling of electrical energy storage systems in a liberalized energy market. Energies 2013, 6, 5738–5759. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Bui, V.-H.; Kim, H.-M. Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs) for Enhancing the Resiliency of Hybrid Microgrids. Energies 2017, 10, 271. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Hesse, H.; Truong, N.; Jossen, A.; Liu, Y.-H. Charging strategy for a residential battery storage system using fuzzy logic controller. In NEIS Conference 2016, 1st ed.; Schulz, D., Ed.; Springer: Wiesbaden, Germany, 2016; pp. 182–189. [Google Scholar]
- Vance, C. The German Residential Energy Consumption Survey; Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI): Essen, Germany, 2011. [Google Scholar]
- Tjaden, T.; Bergner, J.; Weniger, J.; Quaschning, V. Representative Electrical Load Profiles of Residential Buildings in Germany with a Temporal Resolution of One Second. 2015. Available online: https://www.researchgate.net/publication/285577915_Representative_electrical_load_profiles_of_residential_buildings_in_Germany_with_a_temporal_resolution_of_one_second (accessed on 16 November 2017).
- Zeh, A.; Rau, M.; Witzmann, R. Comparison of decentralised and centralised grid-compatible battery storage systems in distribution grids with high PV penetration. Prog. Photovolt. Res. Appl. 2016, 24, 496–506. [Google Scholar] [CrossRef]
- Jahn, U.; Nasse, W. Operational performance of grid-connected PV systems on buildings in Germany. Prog. Photovolt. Res. Appl. 2004, 12, 441–448. [Google Scholar] [CrossRef]
- Weniger, J.; Tjaden, T.; Quaschning, V. Sizing of residential PV battery systems. Energy Procedia 2014, 46, 78–87. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-lifepo4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Rosenkranz, C.A. Modern battery systems for plug-in hybrid electric vehicles. Power 2007, 1, 100. [Google Scholar]
- Yasuda, M. Sony Energy Storage System Using Olivine Type Battery Fortelion. 2012. Sony Energy Devices. Available online: https://www.eiseverywhere.com/file_uploads/89b02d8a4305f5ffe09d0c27691441af_O-302YasudaMasayuki.pdf (accessed on 17 November 2017).
- Pesaran, A.; Markel, T. Battery Requirements and Cost-Benefit Analysis for Plug-in Hybrid Vehicles (Presentation); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2007.
- Sony Energy Devices Quality. Available online: http://www.sonyenergy-devices.co.jp/en/csr/quality.php (accessed on 13 November 2017).
- Naumann, M.; Schimpe, M.; Keil, P.; Hesse, H.C.; Jossen, A. Analysis and modeling of calendar aging of a commercial LiFePO4/graphite cell. J. Energy Storage 2018, in press. [Google Scholar]
- Truong, C.N.; Naumann, M.; Karl, R.C.; Müller, M.; Jossen, A.; Hesse, H.C. Economics of residential photovoltaic battery systems in germany: The case of tesla’s powerwall. Batteries 2016, 2, 14. [Google Scholar] [CrossRef]
- Battke, B.; Schmidt, T.S.; Grosspietsch, D.; Hoffmann, V.H. A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications. Renew. Sustain. Energy Rev. 2013, 25, 240–250. [Google Scholar] [CrossRef]
- Jallouli, R.; Krichen, L. Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices. Energy 2012, 40, 196–209. [Google Scholar] [CrossRef]
- BDEW-Strompreisanalyse 2017. Available online: https://www.hannover.ihk.de/fileadmin/data/Dokumente/Themen/Energie/170531_BDEW_Strompreisanalyse_Mai2017.pdf (accessed on 13 November 2017).
- Fuchs, G.; Lunz, B.; Leuthold, M.; Sauer, D.U. Technology Overview on Electricity Storage. 2012. ISEA. Available online: http://www.sefep.eu/activities/projects-studies/120628_Technology_Overview_Electricity_Storage_SEFEP_ISEA.pdf (accessed on 17 November 2017).
- Naumann, M.; Karl, R.C.; Truong, C.N.; Jossen, A.; Hesse, H.C. Lithium-ion battery cost analysis in PV-household application. Energy Procedia 2015, 73, 37–47. [Google Scholar] [CrossRef]
- KfW-Programm Erneuerbare Energien-Speicher (275). Available online: https://www.kfw.de/KfW-Konzern/Service/Download-Center/F%C3%B6rderprogramme-%28Inlandsf.%29-%28D-EN%29/Barrierefreie-Dokumente/KfW-Programm-Erneuerbare-Energien-Speicher-%28275%29-Merkblatt/ (accessed on 17 November 2017).
- Coelho, V.N.; Coelho, I.M.; Coelho, B.N.; Reis, A.J.; Enayatifar, R.; Souza, M.J.; Guimarães, F.G. A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Appl. Energy 2016, 169, 567–584. [Google Scholar] [CrossRef]
- Fossati, J.P.; Galarza, A.; Martín-Villate, A.; Fontán, L. A method for optimal sizing energy storage systems for microgrids. Renew. Energy 2015, 77, 539–549. [Google Scholar] [CrossRef]
- Kang, C.-S.; Hyun, C.-H.; Park, M. Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings. Appl. Energy 2015, 155, 270–283. [Google Scholar] [CrossRef]
- Keshtkar, A.; Arzanpour, S. An adaptive fuzzy logic system for residential energy management in smart grid environments. Appl. Energy 2017, 186, 68–81. [Google Scholar] [CrossRef]
- Kruse, R.; Gebhardt, J.E.; Klowon, F. Foundations of Fuzzy Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Passino, K.M.; Yurkovich, S.; Reinfrank, M. Fuzzy Control; Addison-Wesley: Menlo Park, CA, USA, 1998; Volume 20, Available online: http://www2.ece.ohio-state.edu/~passino/FCbook.pdf (accessed on 13 November 2017).
- Cheng, Y.-S.; Chuang, M.-T.; Liu, Y.-H.; Wang, S.-C.; Yang, Z.-Z. A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint. Renew. Energy 2016, 88, 58–72. [Google Scholar] [CrossRef]
- Clarke, D.P.; Al-Abdeli, Y.M.; Kothapalli, G. Multi-objective optimisation of renewable hybrid energy systems with desalination. Energy 2015, 88, 457–468. [Google Scholar] [CrossRef]
- Niknam, T. A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy 2010, 87, 327–339. [Google Scholar] [CrossRef]
- Niknam, T.; Firouzi, B.B.; Ostadi, A. A new fuzzy adaptive particle swarm optimization for daily volt/var control in distribution networks considering distributed generators. Appl. Energy 2010, 87, 1919–1928. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Battery Type | LFP battery |
Nominal Capacity | 1.2 kWh |
Rated Capacity | 1.1 kWh |
Aging Model | Rosenkranz model [26] |
Lifetime Assumptions | 20 years lifetime 6000 EFC |
Maximum/Minimum SOC | 100/0% |
Battery Replacement Criterion | 80% SOH |
Item | Value |
---|---|
Interest Rate | 4% |
Inflation Rate | 2% |
Electricity Price | €0.37/kWh |
Feed-In Tariff | €0.12/kWh |
Battery Price | €387.5/kWh |
Feed-In Limitation | 50% of peak PV power |
PSO Parameters | ||||||
6 elements in one particle | ||||||
{SOC_MS SOC_M SOC_ML ∆SOC_NS ∆SOC_Z ∆SOC_PS} | ||||||
parameters | value | |||||
particle number | 20 | |||||
iteration number | 30 | |||||
c1 | 1 | |||||
c2 | 2 | |||||
wmax | 1 | |||||
wmin | 0.1 | |||||
Search Space | ||||||
SOC_MS | SOC_M | SOC_ML | ∆SOC_NS | ∆SOC_Z | ∆SOC_PS | |
xij max | 1 | 1 | 1 | 0.1 | 0.1 | 0.1 |
xij min | 0 | 0 | 0 | −0.1 | −0.1 | −0.1 |
vij max | 0.1 | 0.1 | 0.1 | 0.02 | 0.02 | 0.02 |
vij min | −0.1 | −0.1 | −0.1 | −0.02 | −0.02 | −0.02 |
Results | ||||||
Best Setting | 0.66 | 0.73 | 0.88 | −0.05 | 0.054 | 0.1 |
Method | Greedy | FID | FuzzyN | FuzzyOP | Total House |
---|---|---|---|---|---|
Before optimization | 19 | 11 | 44 | N.A. | 74 |
After optimization | 0 | 1 | 0 | 73 | 74 |
Cost | Perfect Foresight | Greedy | FID | FuzzyN | FuzzyOP |
---|---|---|---|---|---|
Average cost (€) per year, per household | 765.72 | 786.11 | 786.21 | 784.00 | 777.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-S.; Liu, Y.-H.; Hesse, H.C.; Naumann, M.; Truong, C.N.; Jossen, A. A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community. Energies 2018, 11, 469. https://doi.org/10.3390/en11020469
Cheng Y-S, Liu Y-H, Hesse HC, Naumann M, Truong CN, Jossen A. A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community. Energies. 2018; 11(2):469. https://doi.org/10.3390/en11020469
Chicago/Turabian StyleCheng, Yu-Shan, Yi-Hua Liu, Holger C. Hesse, Maik Naumann, Cong Nam Truong, and Andreas Jossen. 2018. "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community" Energies 11, no. 2: 469. https://doi.org/10.3390/en11020469
APA StyleCheng, Y.-S., Liu, Y.-H., Hesse, H. C., Naumann, M., Truong, C. N., & Jossen, A. (2018). A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community. Energies, 11(2), 469. https://doi.org/10.3390/en11020469