Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella
<p>Identified compounds by dereplication with LC-HRESIMS.</p> "> Figure 2
<p><sup>1</sup>H–<sup>1</sup>H COSY and key HMBC correlations of compounds <b>1</b>,<b>2</b>.</p> "> Figure 3
<p>Cytotoxic effects of compounds <b>1</b> and <b>2</b> on human colon cancer (HT-29), human ovarian cancer (OVACR-3), and multiple myeloma (MM.1s) cell lines. The cells were stimulated overnight with increasing concentrations of compounds <b>1</b> and <b>2</b>. on the next day, cellular viability was determined by crystal violet staining for HT-29 and OVACR-3, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for MM.1s.</p> "> Figure 4
<p>Morphological changes of HT-29, OVCAR-3, and MM.1S cells incubated overnight with compound (<b>1</b>) (20 µM) in comparison to untreated cells using an EVOS FL digital microscope.</p> "> Figure 5
<p>Western blotting analysis of <b>1</b> against beclin and caspase 3, the key proteins of autophagy and apoptosis, respectively.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolomic Profiling
2.2. Structure Characterization of the Isolated Compounds
2.3. Antibacterial Activity
2.4. Antibiofilm Activity
2.5. Antitrypanosomal Activity
2.6. Cytotoxic Activity
3. Material and Methods
3.1. Extraction and Fractionation
3.2. Metabolomics Analysis
3.3. Assessment of Antibacterial Activity
3.4. Bioactivity-Guided Isolation of the Major Metabolites
3.5. Screening of Antibiofilm Activity
3.6. Antitrypanosomal Activity Testing
3.7. Cytotoxic Activity Assessment
3.8. Western Blotting
3.9. IL8 ELISA
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soes, R.W.; de Voogd, N.J.; Wray, V.; Hentschel, U.; Kozytska, S.; Müller, W.E.; Proksch, P. From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem. 2010, 18, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2001, 19, 1–48. [Google Scholar] [CrossRef]
- Hentschel, U.; Usher, K.M.; Taylor, M.W. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 2006, 55, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergquist, P.R. Sponges; University of California Press: Berkeley, CA, USA, 1978. [Google Scholar]
- Ilan, M.; Gugel, J.; Van Soest, R. Taxonomy, reproduction and ecology of new and known Res Sea Sponges North Atlantic. Mar. Sci. 2004, 89, 388–410. [Google Scholar]
- Kashman, Y.; Yosief, T.; Carmeli, S. New Triterpenoids from the Red Sea sponge Siphonochalina siphonella. J. Nat. Prod. 2001, 64, 175–180. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Seven new polyacetylene derivatives, showing both potent metamorphosis-inducing activity in ascidian larvae and antifouling activity against barnacle larvae, from the marine sponge Callyspongia truncate. J. Nat. Prod. 1997, 60, 126–130. [Google Scholar] [CrossRef]
- Sera, Y.; Adachi, K.; Shizuri, Y. A new epidioxy sterol as an antifouling substance from a Palauan marine sponge, Lendenfeldia chondrodes. J. Nat. Prod. 1999, 62, 152–154. [Google Scholar] [CrossRef]
- Youssef, D.T.; Ibrahim, A.K.; Khalifa, S.I.; Mesbah, M.K.; Mayer, A.M.; van Soest, R.W. New anti-inflammatory sterols from the two Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella. Nat. Prod. Commun. 2010, 5, 27–31. [Google Scholar]
- Bjarnshoit, T.; Jensen, P.Q.; Jakobsen, T.H.; Phipps, R.; Nielsen, A.K.; Rybtke, M.T.; Tolker-Nielsen, T.; Givskov, M.; Haiby, N.; Ciofu, O. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE 2010, 5, e10115. [Google Scholar]
- Li, Y.H.; Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors 2012, 12, 2519–2538. [Google Scholar] [CrossRef]
- Pejin, B.; Talevska, A.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Talevski, T.; Sokovic, M. Anti-quorum sensing activity of selected sponge extracts: A case study of Pseudomonas aeruginosa. Nat. Prod. Res. 2014, 28, 2330–2333. [Google Scholar] [CrossRef] [PubMed]
- Azcuna, M.; Tun, J.O.; Yap, H.T.; Concepcion, G.P. Callyspongia samarensis (Porifera) extracts exhibit anticancer activity and induce bleaching in Porites cylindrica (Scleractinia). Chem. Ecol. 2018, 34, 397–411. [Google Scholar] [CrossRef]
- Shi, Z.; Jain, S.; Kim, I.W.; Peng, X.X.; Abraham, I.; Youssef, D.T.A.; Fu, L.W.; El-Sayed, K.; Ambudkar, S.V.; Chen, Z.S. Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Cancer Sci. 2007, 98, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Hu, J.; Lei, H.; Chen, X.Q.; Zhou, X.F.; Liu, Y.H. Chemical constituents of marine sponge Callyspongia sp. from the South China Sea. Chem. Nat. Compd. 2012, 48, 350–351. [Google Scholar] [CrossRef]
- Johansen, S.S.; Licht, D.; Arvin, E.; Mosbæk, H.; Hansen, A.B. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl. Microbiol. Biotechnol. 1997, 47, 292–300. [Google Scholar] [CrossRef]
- Mujahid, M.; Sasikala, C.; Ramana, C.V. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Appl. Microbiol. Biotechnol. 2011, 89, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull. 1994, 42, 2449–2451. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, X.; Shao, Z.; Ren, J.; Liu, D.; Proksch, P.; Lin, W. Indole-based alkaloids from deep-sea bacterium Shewanella piezotolerans with antitumor activities. J. Antibiot. 2014, 67, 395. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Xie, Z.; Chen, M.; Li, L.; Peng, Y.; Chen, S.; Li, W.; Deng, B. Discovery of 3,3-di(indolyl)indolin-2-one as a novel scaffold for α-glucosidase inhibitors: In silico studies and SAR predictions. Bioorg. Chem. 2017, 72, 228–233. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ji, S.J. Facile synthesis of 3,3-di(heteroaryl)indolin-2-one derivatives catalyzed by ceric ammonium nitrate (CAN) under ultrasound irradiation. Tetrahedron 2006, 62, 1527–1535. [Google Scholar] [CrossRef]
- Carmely, S.; Kashman, Y. The Sipholanes: A novel group of triterpenes from the marine sponge Siphonochalina siphonella. J. Org. Chem. 1983, 48, 3517–3525. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35 (Suppl. 1), D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.S.; Lee, S.J.; Yang, C.W.; Chen, I.S. Cytotoxic sesquiterpenes from Magnolia kachirachirai. Chem. Biodivers. 2010, 7, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Pedro, J.R.I.; Seoane, E. Constituents of a hexane extract of Phoenix dactylifera. Phytochemistry 1983, 22, 2087–2088. [Google Scholar]
- Delbeke, E.I.P.; Everaert, J.; Uitterhaegen, E.; Verweire, S.; Verlee, A.; Talou, T.; Soetaert, W.; Van Bogaert, I.N.A.; Stevens, C.V. Petroselinic acid purifcation and its use for the fermentation of new sophorolipids. AMB Express 2016, 6, 28. [Google Scholar] [CrossRef]
- Knothe, G.; Steidley, K.R. Composition of Some Apiaceae Seed Oils Includes Phytochemicals, and Mass Spectrometry of Fatty Acid 2-Methoxyethyl Esters. Eur. J. Lipid. Sci. Tech. 2019, 121, 1800386. [Google Scholar] [CrossRef]
- Afifi, R.; Khabour, O.F. Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens. J. King Saud Univ. Sci. 2017. [Google Scholar] [CrossRef]
- Buommino, E.; Scognamiglio, M.; Donnarumma, G.; Fiorentino, A.; D0Abrosca, B. Recent advances in natural product-based anti-biofilm approaches to control infections. Mini Rev. Med. Chem. 2014, 14, 1169–1182. [Google Scholar] [CrossRef]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human african trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef]
- Thirumangalakudi, L.; Yin, L.; Rao, H.V.; Grammas, P. IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J. Alzheimers Dis. 2007, 11, 305–311. [Google Scholar] [CrossRef]
- Anany, M.A.; Kreckel, J.; Füllsack, S.; Rosenthal, A.; Otto, C.; Siegmund, D.; Wajant, H. Soluble TNF-like weak inducer of apoptosis (TWEAK) enhances poly (I: C)-induced RIPK1-mediated necroptosis. Cell Death Dis. 2018, 9, 1084. [Google Scholar] [CrossRef] [PubMed]
- Valgas, C.; Souza, S.M.D.; Smânia, E.F.; Smânia, J.A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement; CLSI Document M100-S16CLSI; CLSI: Wayne, PA, USA, 2006. [Google Scholar]
- Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002, 416, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front. Microbiol. 2014, 4, 422. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993, 55, 257–261. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.; Hentschel, U.; Abdelmohsen, U.R. Isolation of Petrocidin A, a New Cytotoxic Cyclic Dipeptide from the Marine Sponge-Derived Bacterium Streptomyces sp. SBT348. Mar. Drugs 2017, 15, 383. [Google Scholar] [CrossRef]
NP | Compound | RT (min) | [M + H]+ | Calculated Mass | Chemical Formula |
---|---|---|---|---|---|
1 | Compound 1 a | 3.21 | 442.0552 | 442.0555 | C24H17N3OBr |
2 | Compound 2 a | 3.32 | 442.552 | 442.0555 | C24H17N3OBr |
3 | Sipholenol A c | 5.96 | 477.3941 | 477.3944 | C30H53O4 |
4 | Sipholenone A c | 6.41 | 475.3785 | 475.3787 | C30H51O4 |
5 | Callysterol c | 7.12 | 401.381 | 401.3783 | C28H49O |
6 | Cholestenone b | 7.38 | 385.3472 | 385.347 | C27H45O |
7 | 5α-cholestanone b | 7.41 | 387.3625 | 387.3627 | C27H47O |
8 | Stigmasterone b | 7.49 | 411.3634 | 411.3637 | C29H47O |
9 | stigmasta-4,22-dien-3,6-dione b | 6.95 | 425.345 | 425.342 | C29H45O2 |
10 | Petroselenic acid b | 8.91 | 283.2634 | 283.2637 | C18H35O2 |
11 | Callyspongidipeptide A | 2.26 | 227.139 | 227.1396 | C11H19N2O3 |
12 | Callysponginol sulfate A | 2.6 | 459.2783 | 459.278 | C24H43O6S |
13 | N-acetyl isatin b | 2.7 | 190.0501 | 190.0504 | C10H8NO3 |
14 | Trisindoline b | 2.86 | 364.1456 | 364.145 | C24H18N3O |
15 | 1,2,3,4-tetrahydro-1- methyl-β-carboline-3-carboxylic acid | 2.99 | 231.1133 | 231.1134 | C13H15N2O2 |
16 | Callystatin A | 3.83 | 457.3325 | 457.3318 | C29H45O4 |
17 | Hydroxydihydrobovolide | 3.88 | 199.1339 | 199.1334 | C11H19O3 |
18 | Callyspongidic acid | 3.95 | 395.2429 | 395.2434 | C22H35O6 |
19 | Callyspongendiol | 4.51 | 437.3413 | 437.3420 | C30H45O2 |
20 | 15,16-epoxy-22-hydroxysipholen-one A | 5.18 | 507.3676 | 507.3686 | C30H51O6 |
21 | Sipholenoside B | 5.34 | 623.452 | 623.4523 | C36H63O8 |
22 | Sipholenol G | 5.39 | 493.3889 | 493.3893 | C30H53O5 |
23 | Sipholenoside A | 5.63 | 621.4368 | 621.4366 | C36H61O8 |
24 | Sipholenone C | 6.26 | 489.3562 | 489.3580 | C30H49O5 |
Compound 1 | Compound 2 | |||
---|---|---|---|---|
Position | δH, mult. (J in Hz) | δC, Type | δH, mult. (J in Hz) | δC, Type |
1-NH | 10.77 (br s, 1H) | - | 10.75, (br s, 1H) | - |
2 | - | 178.9, C | - | 179, C |
3 | - | 53.2, C | - | 52.7, C |
3a | - | 137.4, C | - | 134.3, C |
4 | 7.30, (s, 1H) | 127.8, CH | 7.16, (d, 8Hz, 1H) | 127.1, CH |
5 | - | 114, C | 7.12, (dd, 2Hz, 8Hz, 1H) | 124.6, CH |
6 | 7.42, (d, 8Hz, 1H) | 131.2, CH | - | 120.7, C |
7 | 6.97, (d, 8Hz, 1H) | 112.2, CH | 7.14, (s, 1H) | 112.8, CH |
7a | - | 141.1, C | - | 143.5, C |
1-NH’, 1-NH’’ | 11.03 (br s, 2H) | - | 11.0, (br s, 1H) | - |
2′, 2′’ | 6.89, (s, 2H) | 124.9, CH | 6.85, (d, 2.5Hz, 2H) | 124.8, CH |
3′, 3′’ | - | 113.6, C | - | 114.0, C |
3′a, 3′’a | - | 126, C | - | 126, C |
4′, 4′’ | 7.22, (d, 8Hz, 2H) | 121, CH | 7.2, (d, 8Hz, 2H) | 121, CH |
5′, 5′’ | 6.83, (t, 8Hz, 2H) | 119, CH | 6.81, (t, 8Hz, 2H) | 118.8, CH |
6′, 6′’ | 7.04, (t, 8Hz, 2H) | 121.5, CH | 7.03, (t, 8Hz, 2H) | 121.5, CH |
7′, 7′’ | 7.39, (d, 8Hz, 2H) | 112.2, CH | 7.35, (d, 8Hz, 2H) | 112.1, CH |
7′a, 7′’a | - | 137.4, C | - | 137.4, C |
Tested Extract | Staphylococcus aureus | Bacillus subtilis | Escherichia coli | Pseudomonas aeruginosa |
---|---|---|---|---|
EtOH Ext | 1.1 ± 0.5 | 1.2 ± 0.2 | - | - |
Hex | 2.3 ± 0.9 | 1.1 ± 0.4 | - | 1 ± 0.4 |
EtOAc | 6.6 ± 0.2 | 5.4 ± 0.3 | 1.5 ± 0.7 | - |
ButOH | - | 0.5 ± 0.2 | - | - |
Ampicillin | 13.7 ± 0.9 | 12.3 ± 1.2 | 3.9 ± 0.9 | 3.6 ± 0.3 |
Gentamicin | 9.8± 1.2 | 10.1 ± 1.1 | 15.5 ± 0.1 | 14.8 ± 1.3 |
Tested compound | S. aureus | B. subtilis | E. coli | P. aeruginosa |
---|---|---|---|---|
1 | 17.5 ± 0.8 | 18 ± 0.1 | 0.5 ± 0.1 | 1.3 ± 0.3 |
2 | 15 ± 1.1 | 16.4 ± 0.9 | 0.2 ± 0.2 | 1.1 ± 0.7 |
Amikacin | 23.5 ± 0.8 | 20.2 ± 0.6 | 15.4 ± 0.4 | 16.3 ± 0.9 |
Fungal metabolite | S. aureus | B. subtilis | E. coli | P. aeruginosa |
---|---|---|---|---|
1 | 8 | 4 | >256 | 256 |
2 | 16 | 4 | >256 | 256 |
Ampicillin | 2 | 2 | 4 | 8 |
Gentamicin | 16 | 8 | 0.5 | 1 |
Isolated compound | % Inhibition |
---|---|
1 | 49.32 ± 1.18 |
2 | 41.76 ± 1.33 |
Azithromycin | 52.62 ±1.23 |
Compounds | IC50 (µM) a | ||
---|---|---|---|
HT-29 | OVCAR-3 | MM. 1S | |
1 | 8 ± 0.8 | 7 ± 0.3 | 9 ± 0.7 |
2 | 12.5 ± 0.3 | 9 ± 0.6 | 11 ± 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hawary, S.S.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; Rateb, M.E.; Amin, E.; Mohammed, T.A.; El-Mesery, M.; Bin Muhsinah, A.; Alsayari, A.; et al. Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Mar. Drugs 2019, 17, 465. https://doi.org/10.3390/md17080465
El-Hawary SS, Sayed AM, Mohammed R, Hassan HM, Rateb ME, Amin E, Mohammed TA, El-Mesery M, Bin Muhsinah A, Alsayari A, et al. Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Marine Drugs. 2019; 17(8):465. https://doi.org/10.3390/md17080465
Chicago/Turabian StyleEl-Hawary, Seham S., Ahmed M. Sayed, Rabab Mohammed, Hossam M. Hassan, Mostafa E. Rateb, Elham Amin, Tarek A. Mohammed, Mohamed El-Mesery, Abdullatif Bin Muhsinah, Abdulrhman Alsayari, and et al. 2019. "Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella" Marine Drugs 17, no. 8: 465. https://doi.org/10.3390/md17080465
APA StyleEl-Hawary, S. S., Sayed, A. M., Mohammed, R., Hassan, H. M., Rateb, M. E., Amin, E., Mohammed, T. A., El-Mesery, M., Bin Muhsinah, A., Alsayari, A., Wajant, H., Anany, M. A., & Abdelmohsen, U. R. (2019). Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella. Marine Drugs, 17(8), 465. https://doi.org/10.3390/md17080465