Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning
<p>This paper first introduces three types of thermal effects, followed by simulations of the sensor head using different design schemes. Subsequently, a machine learning model is trained to reconstruct the temperature distribution of the sensor head, thereby enabling the modeling and estimation of thermal noise.</p> "> Figure 2
<p>(<b>a</b>) This image depicts a cross-section of a GRS. When there is a temperature gradient along the <span class="html-italic">x</span>-axis, the red color represents the hot area, and the blue color represents the cold area. The presence of this thermal gradient causes a net thermal shear force (blue arrows) along the <span class="html-italic">x</span>-axis. The dashed arrow represents the emission of molecules from a specific point on the surface of the EH. (<b>b</b>) Due to the different temperatures on the upper and lower surfaces of the EH, different magnitudes of pressure are exerted on the respective faces, affecting the TM.</p> "> Figure 3
<p>(<b>a</b>) The geometric design of the EH, which is made up of aluminum and sapphire materials; (<b>b</b>) the mesh division of finite element simulation.</p> "> Figure 4
<p>The red dots represent the locations of the heating heat source, and the green dots represent the locations of the temperature sensors. On the left side, in the simulated ground-based experiment, the EH is alternately heated by symmetric heat sources on both sides, and the temperature sensor is located on the surface of the EH. On the right side, in the simulated on-orbit test experiment, some random heat sources transfer heat to the EH through thermal radiation, and the temperature sensor is located around the EH.</p> "> Figure 5
<p>This is a simplified EH and its unfolded diagram, with each surface divided into four zones that are numbered. We assume that the temperature in each area is the same, using the temperature at the central position of each zone to represent the temperature gradient potential of each surface.</p> "> Figure 6
<p>(<b>a</b>) The heating function of the heat source; (<b>b</b>) the change in temperature of various temperature sensors.</p> "> Figure 7
<p>With the alternate heating of the heaters, the surface temperature of EH changes. Another set of heaters—GH_3, GH_4—are positioned on the other side of the EH.</p> "> Figure 8
<p>The surface temperature distribution of the EH at a certain moment.</p> "> Figure 9
<p>Four heat sources radiate towards the EH in a random manner, the image shows the temperature-changing process of the EH.</p> "> Figure 10
<p>Firstly, the weight data of a temperature sensor were used for pre-training; then, these were cross-referenced with the original data through element-wise multiplication and finally input into LSTM (long short-term memory) for secondary training.</p> "> Figure 11
<p>Diagram of LSTM structure.</p> "> Figure 12
<p>The figure illustrates the end-to-end learning process of XGBoost-LSTM. After the temperature sensor data are input into the model, it is first pre-trained by XGBoost. The training result contains the weight information of the temperature sensors. This weight information is then processed and crossed with the original data, which are subsequently input into LSTM for secondary learning. This process enables adaptive weight adjustment learning strategies for different areas.</p> "> Figure 13
<p>The average performance of different algorithms in different areas.</p> "> Figure 14
<p>Polynomial interpolation performance in the reconstruction residuals of ground simulation data.</p> "> Figure 15
<p>BP neural network performance in the reconstruction residuals of ground simulation data.</p> "> Figure 16
<p>XGBoost-LSTM performance in the reconstruction residuals of ground simulation data.</p> "> Figure 17
<p>The average performance of different algorithms at different areas.</p> "> Figure 18
<p>BP neural network performance in the reconstruction residuals of the on-orbit simulation data.</p> "> Figure 19
<p>XGBoost-LSTM performance in the reconstruction residuals of the on-orbit simulation data.</p> "> Figure 20
<p>The importance of temperature sensors in different areas (on-orbit data).</p> "> Figure 21
<p>The importance of temperature sensors in different areas (ground data).</p> "> Figure 22
<p>(<b>a</b>,<b>b</b>) The amplitude spectrum density images of the residuals in the less-optimal and best-case scenarios, respectively, of the reconstruction algorithm in the ground test data. (<b>c</b>,<b>d</b>) The amplitude spectrum density images of the residuals in the less-optimal and best-case scenarios of the reconstruction algorithm, respectively, in the on-orbit test data.</p> "> Figure 22 Cont.
<p>(<b>a</b>,<b>b</b>) The amplitude spectrum density images of the residuals in the less-optimal and best-case scenarios, respectively, of the reconstruction algorithm in the ground test data. (<b>c</b>,<b>d</b>) The amplitude spectrum density images of the residuals in the less-optimal and best-case scenarios of the reconstruction algorithm, respectively, in the on-orbit test data.</p> "> Figure 23
<p>For the amplitude spectral density image of the general results of the on-orbit reconstruction, we used this result to estimate the recognition level of thermal noise.</p> "> Figure 24
<p>The loss of reconstruction accuracy (MAE) of the BP neural network and XGBoost-LSTM when the number of temperature sensors decreases.</p> ">
Abstract
:1. Introduction
- The algorithm’s dynamism allows it to reconstruct temperature at any point on the EH surface using temperature sensor data with variable weights.
- Compared to the BP neural network, the algorithm is less dependent on the number of temperature sensors.
- The intermediate output of the algorithm presents the weight information of the temperature sensors, which can be determined through further experiments to ascertain the optimal number and placement of temperature sensors.
2. Analysis of Temperature Noise Impact
2.1. Thermal Radiometer Effect
2.2. Thermal Radiation Pressure
2.3. Asymmetric Outgassing
3. Simulation
3.1. General Description of Simulation
3.1.1. Ground-Based Test Simulation
3.1.2. On-Orbit Test Simulation
3.2. Simulation Results
3.2.1. Ground-Based Test Simulation Data
3.2.2. On-Orbit Test Simulation Data
4. Methods
4.1. XGBoost-LSTM Algorithm
4.1.1. XGBoost
4.1.2. LSTM
4.1.3. Algorithm Implementation Principles
4.2. Other Methods
4.3. Metrics
5. Results and Discussion
5.1. Reconstruction Results for Temperature Field of Sensor Head
5.1.1. Reconstruction Results of Ground Test Data
5.1.2. Reconstruction Results for On-Orbit Test Data
5.2. Discussion of Reconstruction Accuracy
5.3. Discussion of Robustness of Algorithm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TM | Test mass |
EH | Electrode housing |
LPF | LISA PathFinder |
EP | Equivalence principle |
BP | Back propagation neural network |
PI | Polynomial interpolation |
XGBoost | Extreme gradient boosting |
LSTM | Long short-term memory network |
XL | XGBoost-LSTM |
References
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Castelli, E.; Cavalleri, A.; Cesarini, A.; et al. Sensor Noise in LISA Pathfinder: In-Flight Performance of the Optical Test Mass Readout. Phys. Rev. Lett. 2021, 126, 131103. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.; Duan, H.; Gong, Y.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M. Tianqin: A space-borne gravitational wave detector. Class. Quantum Gravity 2015, 33, 035010. [Google Scholar] [CrossRef]
- Cyranoski, D. Chinese gravitational-wave hunt hits crunch time. Nature 2016, 531, 150–151. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Z.; Jin, G.; Wu, Y.; Hu, W. A brief analysis to Taiji: Science and technology. Results Phys. 2020, 10, 102918. [Google Scholar] [CrossRef]
- Wu, Y.L.; Luo, Z.R.; Wang, J.Y.; Bai, M.; Zou, Z.M. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Commun. Phys. 2021, 4, 34. [Google Scholar]
- Hu, W.; Wu, Y. Taiji program in space for gravitational wave physics and nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, P.; Ye, Z.; Ye, D.; Qiang, L.-E.; Luo, Z.; Qi, K.; Wang, S.; Cai, Z.; Wang, Z.; et al. A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission. Remote Sens. 2023, 15, 3817. [Google Scholar] [CrossRef]
- Touboul, P.; Willemenot, E.; Foulon, B.; Josselin, V. GRACE and GOCE space missions: Synergy and evolution. Boll. Geofis. Teor. Appl. 1999, 40, 321–327. [Google Scholar]
- Heinzel, G.; Wand, V.; García, A.; Jennrich, O.; Braxmaier, C.; Robertson, D.; Middleton, K.; Hoyland, D.; Rüdiger, A.; Schilling, R.; et al. The LTP interferometer and phasemeter. Class. Quantum Gravity 2004, 21, S581. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Wang, Y.; Zhao, Z.; Wang, Z. High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation. Sensors 2024, 24, 1009. [Google Scholar] [CrossRef]
- Araújo, H.; Boatella, C.; Chmeissani, M.; Conchillo, A.; García-Berro, E.; Grimani, C.; Hajdas, W.; Lobo, A.; Ll, M.; Nofrarias, M.; et al. LISA and LISA PathFinder, the endeavour to detect low frequency GWs. J. Phys. Conf. Ser. 2007, 66, 012003. [Google Scholar] [CrossRef]
- Cañizares, P.; Conchillo, A.; García-Berro, E.; Gesa, L.; Grimani, C.; Lloro, I.; Lobo, A.; Mateos, I.; Nofrarias, M.; Ramos-Castro, J.; et al. The diagnostics subsystem on board LISA Pathfinder and LISA. Class. Quantum Gravity 2009, 26, 094005. [Google Scholar] [CrossRef]
- Lobo, J.A. Effect of a weak plane GW on a light beam. Class. Quantum Gravity 1992, 9, 1385. [Google Scholar] [CrossRef]
- Harvey, N.; Mccullough, C.M.; Save, H. Modeling GRACE-FO accelerometer data for the version 04 release. Adv. Space Res. Off. J. Comm. Space Res. (COSPAR) 2022, 69, 1393–1407. [Google Scholar] [CrossRef]
- Nobili, A.M.; Bramanti, D.; Comandi, G.L.; Toncelli, R.; Polacco, E. Radiometer effect in the µSCOPE space mission. New Astron. 2002, 7, 521–529. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A.M.; et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder. Mon. Not. R. Astron. Soc. 2019, 486, 3368–3379. [Google Scholar] [CrossRef]
- Gibert, F.; Nofrarias, M.; Diaz-Aguiló, M.; Lobo, A.; Karnesis, N.; Mateos, I.; Sanjuán, J.; Lloro, I.; Gesa, L.; Martín, V. State-space modelling for heater induced thermal effects on LISA Pathfinder’s Test Masses. J. Phys. Conf. 2012, 363, 012044. [Google Scholar] [CrossRef]
- Gustavsen, B.; Semlyen, A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 1999, 14, 1052–1061. [Google Scholar] [CrossRef]
- Ren, L.; Chen, L.; Meng, X.; Wang, Z. Thermal design of ground weak force measurement system for inertial sensors. Chin. Opt. 2023, 16, 1404. [Google Scholar]
- Peng, X.; Jin, H.; Xu, P.; Wang, Z.; Luo, Z.; Ma, X.; Qiang, L.-E.; Tang, W.; Ma, X.; Zhang, Y.; et al. System modeling in data processing of Taiji-1 mission. Int. J. Mod. Phys. A 2021, 36, 2140026. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef] [PubMed]
- Gibert, F.; Nofrarias, M.; Karnesis, N.; Gesa, L.; Martín, V.; Mateos, I.; Lobo, A.; Flatscher, R.; Gerardi, D.; Burkhardt, J.; et al. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft. Class. Quantum Gravity 2015, 32, 045014. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; et al. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors. J. Phys. Conf. Ser. 2015, 610, 012023. [Google Scholar] [CrossRef]
- Basov, M. Schottky diode temperature sensor for pressure sensor. Sens. Actuators A Phys. 2021, 331, 112930. [Google Scholar] [CrossRef]
- Cahoon, C.; Baker, R.J. Low-voltage CMOS temperature sensor design using schottky diode-based references. In Proceedings of the 2008 IEEE Workshop on Microelectronics and Electron Devices, Boise, ID, USA, 8 April 2008; pp. 16–19. [Google Scholar]
- Knyaginin, D.; Rybalka, S.; Drakin, A.Y.; Demidov, A. In Ti/4H-SiC Schottky diode with breakdown voltage up to 3 kV. J. Phys. Conf. Ser. 2019, 1410, 012196. [Google Scholar] [CrossRef]
- Mateos, I.; Díaz-Aguiló, M.; Ramos-Castro, J.; García-Berro, E.; Lobo, A. Interpolation of the magnetic field at the test masses in eLISA. Class. Quantum Gravity 2015, 32, 165003. [Google Scholar] [CrossRef]
- Scarr, R.; Setterington, R. Thermistors, Their Theory, Manufacture and Application. IRE Trans. Compon. Parts 1961, 8, 6–22. [Google Scholar] [CrossRef]
- Sanjuán, J.; Lobo, A.; Nofrarias, M.; Mateos, N.; Xirgu, X.; Cañizares, P.; Ramos-Castro, J. Magnetic polarization effects of temperature sensors and heaters in LISA Pathfinder. Rev. Sci. Instrum. 2008, 79, 084503. [Google Scholar] [CrossRef]
- Sanjuan, J.; Nofrarias, M. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder. Rev. Sci. Instrum. 2018, 89, 045004. [Google Scholar] [CrossRef] [PubMed]
- George, D.; Huerta, E.A. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. Phys. Lett. B 2018, 778, 64–70. [Google Scholar] [CrossRef]
- Carrillo, M.; Gracia-Linares, M.; González, J.A.; Guzmán, F.S. Parameter estimates in binary black hole collisions using neural networks. Sensors 2016, 48, 141. [Google Scholar] [CrossRef]
- Diaz-Aguiló, M.; García-Berro, E.; Lobo, A. Theory and modelling of the magnetic field measurement in LISA PathFinder. Class. Quantum Gravity 2010, 27, 035005. [Google Scholar] [CrossRef]
- Diaz-Aguilo, M.; Lobo, A.; García-Berro, E. Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem. Exp. Astron. 2011, 30, 1–21. [Google Scholar] [CrossRef]
- Vedurmudi, A.P.; Janzen, K.; Nagler, M.; Eichstaedt, S. Uncertainty-aware temperature interpolation for measurement rooms using ordinary Kriging. Meas. Sci. Technol. 2023, 34, 064007. [Google Scholar] [CrossRef]
- Sanjuán, J.; Lobo, A.; Ramos-Castro, J.; Mateos, N.; Díaz-Aguiló, M. ADC non-linear error corrections for low-noise temperature measurements in the LISA band. J. Phys. Conf. Ser. 2010, 228, 012041. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Wu, Y.; Hu, W.; Jin, G. The Taiji program: A concise overview. Prog. Theor. Exp. Phys. 2021, 2021, 05A108. [Google Scholar] [CrossRef]
- Carbone, L.; Cavalleri, A.; Dolesi, R.; Hoyle, C.D.; Hueller, M.; Vitale, S.; Weber, W.J. Characterization of disturbance sources for LISA: Torsion pendulum results. Class. Quantum Gravity 2005, 22, S509. [Google Scholar] [CrossRef]
- Carbone, L.; Cavalleri, A.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. Thermal gradient-induced forces on geodetic reference masses for LISA. Phys. Rev. D 2007, 76, 102003. [Google Scholar] [CrossRef]
- Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Abuqaddom, I.; Mahafzah, B.A.; Faris, H. Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients. Knowl.-Based Syst. 2021, 230, 107391. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Data-partitioning method 1 | 8:1:1 |
Optimizer 2 | adam |
Learning rate 2 | 0.01 |
Activation 2 | linear |
XL-max_depth | 12 |
XL-n_estimators | 500 |
LSTM-No. layers | 5 |
LSTM-droupout | 0.2 |
LSTM-trainable params | 34,024 |
BP-No. layers | 3 |
BP-trainable params | 3704 |
Area | MAE (K) | RMSE (K) | MRE () | ||||||
---|---|---|---|---|---|---|---|---|---|
PI | BP | XL | PI | BP | XL | PI | BP | XL | |
A1 | 593 | 54.6 | 7.63 | 763 | 76.0 | 8.79 | 202 | 18.6 | 2.6 |
A2 | 548 | 49.9 | 7.69 | 705 | 69.7 | 8.86 | 187 | 17.0 | 2.62 |
A3 | 601 | 55.2 | 7.5 | 773 | 77.0 | 8.7 | 205 | 18.8 | 2.56 |
A4 | 546 | 50.3 | 7.71 | 702 | 70.1 | 8.84 | 186 | 17.2 | 2.63 |
B1 | 560 | 51.5 | 7.43 | 721 | 71.6 | 8.65 | 191 | 17.6 | 2.53 |
B2 | 533 | 48.7 | 7.49 | 686 | 68.0 | 8.67 | 182 | 16.6 | 2.56 |
B3 | 564 | 51.5 | 7.81 | 726 | 71.9 | 8.99 | 192 | 17.6 | 2.66 |
B4 | 531 | 48.7 | 7.64 | 683 | 67.9 | 8.84 | 181 | 16.6 | 2.61 |
C1 | 528 | 48.7 | 7.62 | 679 | 68.1 | 8.83 | 180 | 16.6 | 2.6 |
C2 | 524 | 48.3 | 7.65 | 674 | 67.3 | 8.8 | 179 | 16.5 | 2.61 |
C3 | 530 | 48.5 | 7.58 | 681 | 67.7 | 8.8 | 181 | 16.5 | 2.59 |
C4 | 523 | 48.3 | 7.74 | 672 | 67.6 | 8.88 | 178 | 16.5 | 2.64 |
D1 | 657 | 60.4 | 7.71 | 845 | 84.4 | 8.91 | 224 | 20.6 | 2.63 |
D2 | 619 | 57.2 | 7.69 | 796 | 80.1 | 8.89 | 211 | 19.5 | 2.62 |
D3 | 696 | 63.7 | 7.61 | 895 | 89.2 | 8.77 | 237 | 21.7 | 2.6 |
D4 | 608 | 55.7 | 7.83 | 782 | 77.6 | 9.02 | 207 | 19.0 | 2.67 |
E1 | 591 | 54.1 | 7.4 | 760 | 75.8 | 8.64 | 201 | 18.5 | 2.52 |
E2 | 536 | 49.0 | 7.64 | 689 | 68.3 | 8.8 | 183 | 16.7 | 2.6 |
E3 | 574 | 52.9 | 7.44 | 738 | 74.0 | 8.61 | 196 | 18.1 | 2.54 |
E4 | 542 | 50.1 | 7.56 | 698 | 69.9 | 8.75 | 185 | 17.1 | 2.58 |
F1 | 577 | 53.2 | 7.81 | 743 | 74.0 | 8.97 | 197 | 18.1 | 2.67 |
F2 | 531 | 48.7 | 7.54 | 683 | 67.9 | 8.72 | 181 | 16.6 | 2.57 |
F3 | 537 | 49.4 | 7.64 | 691 | 69.2 | 8.84 | 183 | 16.8 | 2.6 |
F4 | 564 | 51.9 | 7.49 | 725 | 72.2 | 8.67 | 192 | 17.7 | 2.56 |
AVG | 567 | 52.1 | 7.61 | 729 | 72.7 | 8.80 | 193 | 17.7 | 2.59 |
MIN | 523 | 48.3 | 7.4 | 672 | 67.3 | 8.61 | 178 | 16.5 | 2.52 |
MAX | 696 | 63.7 | 7.83 | 895 | 89.2 | 9.02 | 237 | 21.7 | 2.67 |
Area | MAE (K) | RMSE (K) | MRE () | |||
---|---|---|---|---|---|---|
BP | XL | BP | XL | BP | XL | |
A1 | 300 | 25.4 | 392 | 38.9 | 102 | 8.68 |
A2 | 258 | 30.8 | 365 | 54.1 | 88.1 | 10.5 |
A3 | 330 | 32.6 | 446 | 47.6 | 112 | 11.1 |
A4 | 252 | 27.8 | 372 | 34.7 | 86.1 | 9.47 |
B1 | 224 | 16.7 | 391 | 25.9 | 76.4 | 5.71 |
B2 | 183 | 20.8 | 320 | 29.8 | 62.3 | 7.09 |
B3 | 194 | 12.2 | 301 | 18.1 | 66.2 | 4.16 |
B4 | 290 | 22.0 | 521 | 37.0 | 98.8 | 7.49 |
C1 | 169 | 20.9 | 266 | 27.7 | 57.5 | 7.12 |
C2 | 333 | 30.6 | 633 | 59.4 | 114 | 10.4 |
C3 | 185 | 28.3 | 290 | 39.1 | 62.9 | 9.64 |
C4 | 209 | 17.0 | 343 | 26.2 | 71.2 | 5.79 |
D1 | 322 | 29.2 | 420 | 48.3 | 110 | 9.97 |
D2 | 258 | 23.1 | 349 | 31.1 | 87.9 | 7.87 |
D3 | 335 | 31.1 | 441 | 39.3 | 114 | 10.6 |
D4 | 279 | 15.2 | 376 | 21.4 | 95.3 | 5.17 |
E1 | 278 | 23.4 | 371 | 33.4 | 94.7 | 7.98 |
E2 | 202 | 15.9 | 357 | 20.8 | 68.8 | 5.41 |
E3 | 212 | 25.7 | 323 | 33.1 | 72.3 | 8.75 |
E4 | 223 | 21.9 | 325 | 27.5 | 76.1 | 7.46 |
F1 | 261 | 18.9 | 356 | 27.5 | 89.0 | 6.45 |
F2 | 223 | 24.1 | 362 | 30.5 | 76.0 | 8.22 |
F3 | 217 | 19.2 | 328 | 28.4 | 73.9 | 6.56 |
F4 | 254 | 13.4 | 357 | 18.3 | 86.5 | 4.57 |
AVG | 249 | 22.7 | 375 | 33.2 | 85.0 | 7.75 |
MIN | 169 | 12.2 | 266 | 18.1 | 57.5 | 4.16 |
MAX | 335 | 32.6 | 633 | 59.4 | 114 | 11.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Ren, F.; Qiang, L.-E.; Qi, K.; Zhang, H. Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning. Sensors 2024, 24, 2529. https://doi.org/10.3390/s24082529
Duan Z, Ren F, Qiang L-E, Qi K, Zhang H. Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning. Sensors. 2024; 24(8):2529. https://doi.org/10.3390/s24082529
Chicago/Turabian StyleDuan, Zongchao, Feilong Ren, Li-E Qiang, Keqi Qi, and Haoyue Zhang. 2024. "Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning" Sensors 24, no. 8: 2529. https://doi.org/10.3390/s24082529
APA StyleDuan, Z., Ren, F., Qiang, L.-E., Qi, K., & Zhang, H. (2024). Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning. Sensors, 24(8), 2529. https://doi.org/10.3390/s24082529