Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor
<p>Measurement method of the TM angle using optical readout and its transfer function. (<b>A</b>) The TM suspended by a fiber is twisted under the action of external stray torque. This angle is precisely measured by an optical readout device through the auxiliary mirror. (<b>B</b>) The transfer function illustrates the relationship between torque and angle of the TM within the measurement frequency band. The resonance frequency of the pendulum is approximately 5 mHz.</p> "> Figure 2
<p>Design form of the TM and EH, along with the electrode distribution used in the torsion pendulum. (<b>A</b>) All surfaces of the TM were ultra-precision machined, with a threaded connection provided in the Z direction. (<b>B</b>) Electrode distribution in different directions: two pairs of electrodes in the same direction controlled one translational and one rotational degree of freedom, respectively. (<b>C</b>) The assembled EH, featuring electrode leads for signal transmission.</p> "> Figure 3
<p>The suspension structure of the TM. The TM was suspended by two fibers separated by a magnetic damper and placed in the EH, which was mounted on the base plate. The suspension path was also provided with two sets of adjusting devices for the position adjustment of the TM.</p> "> Figure 4
<p>The vacuum maintenance system of the torsion pendulum. This mainly consisted of a chamber and a multistage pump group. The autocollimator was fixed on the chamber by a specially designed mounting frame to achieve the angle surveying of the TM inside.</p> "> Figure 5
<p>Main noise curves associated with the designed torsion pendulum. The red curve represents the thermal noise of the torsion pendulum, while the blue curve illustrates the autocollimator background noise measured during the experiment. The carmine curve represents the estimated background noise of the torsion pendulum, obtained by integrating the thermal noise and autocollimator readout noise; it nearly coincided with the blue curve.</p> "> Figure 6
<p>Integrated torsion pendulum as well as the internal TM and EH units. (<b>A</b>) The whole apparatus under experimentation. (<b>B</b>) The TM before integration. (<b>C</b>) The electrode housing under electronics testing.</p> "> Figure 7
<p>The background noise curves of the torsion pendulum system. The blue line represents the estimated background noise as detailed in <a href="#sec3dot4-sensors-24-07816" class="html-sec">Section 3.4</a>. The cyan line depicts the actual measured background noise recorded from the apparatus during experiments. The red line illustrates a smoothed version of the background noise data from the torsion pendulum.</p> ">
Abstract
:1. Introduction
2. The Basic Principle of the Torsion Pendulum
3. System Structural Construction and Performance Evaluation
3.1. The Test Mass and Electrode Housing
3.2. Suspension Structure of the Test Mass
3.3. Vacuum System
3.4. Sensitivity Estimation
4. Background Noise Experiments
5. Conclusions
- Integrated Heterodyne Interference: The design of an integrated heterodyne interference laser measurement system to replace the commercial autocollimator [39], effectively suppressing readout noise while improving measurement accuracy, particularly in the low-frequency range.
- Enhanced Vibration Isolation: The implementation of an advanced vibration isolation system to further mitigate the effects of seismic noise [33].
- Temperature Control and Electromagnetic Shielding: The addition of system-level temperature control and electromagnetic shielding devices to minimize crosstalk from internal and external environments.
- Further Exploration into Signal Acquisition and Processing: The utilization of anti-aliasing and digital filtering strategies, which will significantly improve the precision of the sampled signal. Optimizing the sampling frequency and implementing appropriate extraction or interpolation procedures will further enhance signal quality. Additionally, developing environmental noise extraction and subtraction technologies will strengthen the stability and reliability of the measurement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 2016, 116, 131103. [Google Scholar] [CrossRef]
- Hendry, M. An Introduction to General Relativity, Gravitational Waves and Detection Principles; University of Glasgow: Glasgow, UK, 2007. [Google Scholar]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark energy in light of multi-messenger gravitational-wave astronomy. Front. Astron. Space Sci. 2018, 5, 44. [Google Scholar] [CrossRef]
- Riles, K. Gravitational waves: Sources, detectors and searches. Prog. Part. Nucl. Phys. 2013, 68, 1–54. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser interferometer space antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Anderson, G.; Anderson, J.; Anderson, M.; Aveni, G.; Bame, D.; Barela, P.; Blackman, K.; Carmain, A.; Chen, L.; Armano, M.; et al. Experimental results from the ST7 mission on LISA Pathfinder. Phys. Rev. D 2018, 98, 102005. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Chiavegato, V.; et al. In-depth analysis of LISA Pathfinder performance results: Time evolution, noise projection, physical models, and implications for LISA. Phys. Rev. D 2024, 110, 042004. [Google Scholar] [CrossRef]
- Harry, G.M.; Fritschel, P.; Shaddock, D.A.; Folkner, W.; Phinney, E.S. Laser interferometry for the big bang observer. Class. Quantum Gravity 2006, 23, 4887. [Google Scholar] [CrossRef]
- Kawamura, S.; Nakamura, T.; Ando, M.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; et al. The Japanese space gravitational wave antenna—DECIGO. Class. Quantum Gravity 2006, 23, S125. [Google Scholar] [CrossRef]
- Ni, W.T. ASTROD-GW: Overview and progress. Int. J. Mod. Phys. D 2013, 22, 1341004. [Google Scholar] [CrossRef]
- Wu, Y.L. Hyperunified field theory and Taiji program in space for GWD. Int. J. Mod. Phys. A 2018, 33, 1844014. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.-G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef]
- Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Luo, Z.; Min, Z.; Jin, G.; Wu, Y.; Hu, W. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission. J. Deep. Space Explor. 2020, 7, 3–10. [Google Scholar]
- Luo, Z.; Wang, Y.; Wu, Y.; Hu, W.R.; Jin, G. The Taiji program: A concise overview. Prog. Theor. Exp. Phys. 2021, 2021, 05A108. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; et al. The LISA pathfinder mission. J. Phys. Conf. Ser. 2015, 610, 012005. [Google Scholar] [CrossRef]
- Cavalleri, A.; Ciani, G.; Dolesi, R.; Hueller, M.; Nicolodi, D.; Tombolato, D.; Wass, P.J.; Weber, W.J.; Vitale, S.; Carbone, L. Direct force measurements for testing the LISA Pathfinder gravitational reference sensor. Class. Quantum Gravity 2009, 26, 094012. [Google Scholar] [CrossRef]
- Weber, W.J.; Bortoluzzi, D.; Bosetti, P.; Consolini, G.; Dolesi, R.; Vitale, S. Application of LISA gravitational reference sensor hardware to future intersatellite geodesy missions. Remote Sens. 2022, 14, 3092. [Google Scholar] [CrossRef]
- Schumaker, B.L. Disturbance reduction requirements for LISA. Class. Quantum Gravity 2003, 20, S239. [Google Scholar] [CrossRef]
- Luo, J.; Lei, Y.; Shao, C.; Liu, J.; Li, D.; Liu, R.; Li, Q. Scheme of G measurement with large amplitude torsion pendulum. Phys. Rev. D 2020, 101, 042002. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Yan, J.; Fu, C.; Liu, W. Measurement and prediction of micronewton class thrust of electric propulsion based on the torsional pendulum and machine learning technique. IEEE Trans. Instrum. Meas. 2022, 72, 2502714. [Google Scholar] [CrossRef]
- Wagner, T.A.; Schlamminger, S.; Gundlach, J.H.; Adelberger, E.G. Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 2012, 29, 184002. [Google Scholar] [CrossRef]
- Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Weber, W.J. Measuring fN force variations in the presence of constant nN forces: A torsion pendulum ground test of the LISA Pathfinder free-fall mode. Class. Quantum Gravity 2018, 35, 035017. [Google Scholar] [CrossRef]
- Cavalleri, A.; Ciani, G.; Dolesi, R.; Heptonstall, A.; Hueller, M.; Nicolodi, D.; Rowan, S.; Tombolato, D.; Vitale, S.; Wass, P.J.; et al. A new torsion pendulum for testing the limits of free-fall for LISA TMes. Class. Quantum Gravity 2009, 26, 094017. [Google Scholar] [CrossRef]
- Ciani, G. Free-Fall of LISA Test Masses: A New Torsion Pendulum to Test Translational Acceleration. Ph.D. Thesis, University of Trento, Trento, Italy, 2008. [Google Scholar]
- Marconi, L.; Stanga, R.; Lorenzini, M.; Grimani, C.; Bassan, M.; Pucacco, G.; Di Fiore, L.; De Rosa, R.; Garufi, F.; Milano, L. The 2 Degrees of Freedom facility in Firenze for the study of weak forces. J. Phys. Conf. Ser. 2010, 228, 012037. [Google Scholar] [CrossRef]
- Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; et al. Approaching free fall on two degrees of freedom: Simultaneous measurement of residual force and torque on a double torsion pendulum. Phys. Rev. Lett. 2016, 116, 051104. [Google Scholar] [CrossRef]
- Apple, S.M.; Chilton, A.; Olatunde, T.; Bickerstaff, B.; Hillsberry, D.; Parry, S.; Ciani, G.; Mueller, G.; Conklin, J. University of Florida Torsion Pendulum for Testing Key LISA Technology. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5138. [Google Scholar]
- Chilton, A.; Shelley, R.; Olatunde, T.; Ciani, G.; Conklin, J.W.; Mueller, G. The UF Torsion Pendulum, a LISA Technology Testbed: Sensing System and Initial Results. J. Phys. Conf. Ser. 2015, 610, 012038. [Google Scholar] [CrossRef]
- Yang, F.; Bai, Y.; Hong, W.; Li, H.; Liu, L.; Sumner, T.J.; Zhou, Z. Investigation of charge management using UV LED device with a torsion pendulum for TianQin. Class. Quantum Gravity 2020, 37, 115005. [Google Scholar] [CrossRef]
- Bai, Y.; Li, Z.; Hu, M.; Liu, L.; Qu, S.; Tan, D.; Zhou, Z. Research and development of electrostatic accelerometers for space science missions at HUST. Sensors 2017, 17, 1943. [Google Scholar] [CrossRef]
- Ross, M.P.; Venkateswara, K.; Hagedorn, C.A.; Leupold, C.J.; Forsyth, P.W.F.; Wegner, J.D.; Shaw, E.A.; Lee, J.G.; Gundlach, J.H. A low-frequency torsion pendulum with interferometric readout. Rev. Sci. Instrum. 2021, 92, 054502. [Google Scholar] [CrossRef]
- Bergmann, G.; Cordes, C.; Gentemann, C.; Händchen, V.; Qinglan, W.; Yan, H.; Danzmann, K.; Heinzel, G.; Mehmet, M. A torsion balance as a weak-force testbed for novel optical inertial sensors. Class. Quantum Gravity 2024, 41, 075005. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Z.K.; Jin, G.; Wu, Y.; Hu, W. A brief analysis to Taiji: Science and technology. Results Phys. 2020, 16, 102918. [Google Scholar] [CrossRef]
- Martínez, A.A. Replication of Coulomb’s torsion balance experiment. Arch. Hist. Exact Sci. 2006, 60, 517–563. [Google Scholar] [CrossRef]
- González, G.I.; Saulson, P.R. Brownian motion of a torsion pendulum with internal friction. Phys. Lett. A 1995, 201, 12–18. [Google Scholar] [CrossRef]
- Han, R.; Cai, M.; Yang, T.; Xu, L.; Xia, Q.; Jia, X. Study on Test-Mass Charging for Taiji Gravitational Wave Observatory. Space Weather 2024, 22, e2023SW003724. [Google Scholar] [CrossRef]
- Inchauspé, H.; Olatunde, T.; Apple, S.; Parry, S.; Letson, B.; Turetta, N.; Mueller, G.; Wass, P.J.; Conklin, J.W. Numerical modeling and experimental demonstration of pulsed charge control for the space inertial sensor used in LISA. Phys. Rev. D 2020, 102, 042002. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Dai, L.; Luo, Z.; Xu, P.; Li, P.; Gao, R.; Li, D.; Qi, K. Using DWS Optical Readout to Improve the Sensitivity of Torsion Pendulum. Sensors 2023, 23, 8087. [Google Scholar] [CrossRef]
Parameters | Values | Units | Comment | |
---|---|---|---|---|
Test mass | d | 46 | mm | Length of sides |
mtotal | 0.238 | kg | Total mass of inertial unit | |
Tungsten fiber | L | 1 | m | Length of lower fiber |
R | 50 | μm | Radius of lower fiber | |
G | 161 | GPa | Shear modulus | |
Q | 2300 | / | Quality factor | |
Environment condition | g | 9.801 | m/s2 | Gravitational acceleration |
T | 300 | K | Operating temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Z.; Liu, D.; Dong, P.; Min, J.; Luo, Z.; Qi, K.; Lei, J. Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor. Sensors 2024, 24, 7816. https://doi.org/10.3390/s24237816
Wang S, Wang Z, Liu D, Dong P, Min J, Luo Z, Qi K, Lei J. Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor. Sensors. 2024; 24(23):7816. https://doi.org/10.3390/s24237816
Chicago/Turabian StyleWang, Shaoxin, Zuolei Wang, Dongxu Liu, Peng Dong, Jian Min, Ziren Luo, Keqi Qi, and Jungang Lei. 2024. "Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor" Sensors 24, no. 23: 7816. https://doi.org/10.3390/s24237816
APA StyleWang, S., Wang, Z., Liu, D., Dong, P., Min, J., Luo, Z., Qi, K., & Lei, J. (2024). Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor. Sensors, 24(23), 7816. https://doi.org/10.3390/s24237816