Multi-Sensor-Assisted Low-Cost Indoor Non-Visual Semantic Map Construction and Localization for Modern Vehicles
<p>An illustration of the proposed system structure. I. Non-visual semantic detection, II. map construction, and III. matching and localization (the black, red and cyan dots represent the waypoint, non-visual semantic Landmark and Wi-Fi fingerprint, and the green lines represent the matching relationship of non-visual semantics between the venue map and the trajectory map).</p> "> Figure 2
<p>Diagram of joint points.</p> "> Figure 3
<p>The diagram of the road node’s features in a sliding window (the blue dashed line is the auxiliary line).</p> "> Figure 4
<p>The association relationship among the waypoints, non-visual semantic landmarks, and Wi-Fi fingerprints in a single-trajectory semantic map.</p> "> Figure 5
<p>A schematic diagram of the experimental scene. (<b>a</b>) is a schematic of the floor B3 in the mall 1 scene and (<b>b</b>) is a schematic of the floor B4 in the mall 2 scene.</p> "> Figure 6
<p>Non-visual semantic landmark matching results between the trajectory map and the venue map in two mall scenes. (<b>a</b>,<b>b</b>) represent the results of non-visual semantic landmark matching in mall 1 and mall 2. Red star represents road node, green and red triangle represent slop entry/exit, green and red square represent entry/exit. Black line indicates the waypoints of the constructed scene map, the blue line indicates the waypoints of the new localization map, and the cyan line represent the matching relationship of non-visual semantics between the venue map and the new localization map.</p> "> Figure 7
<p>The localization results based on non-visual semantic landmark matching. (<b>a</b>,<b>b</b>) represents a schematic diagram of 2D and 3D localization results in mall 1. (<b>c</b>,<b>d</b>) represents a schematic diagram of 2D and 3D localization results in mall 2. The blue line indicates the constructed scene map, and the green line indicates the new localization map.</p> "> Figure 8
<p>CDF of localization errors of two malls. (<b>a</b>) is CDF of location errors of mall 1 scene, and (<b>b</b>) is CDF of location errors of mall 2 scene.</p> ">
Abstract
:1. Introduction
- (1)
- For mapping in unknown indoor environments with a modern vehicle, a non-visual semantic landmark detection and non-visual semantic map construction method is proposed. The lightweight semantic map consists of waypoints, Wi-Fi fingerprints, and non-visual semantic landmarks.
- (2)
- To accurately estimate the location of modern vehicles on the venue map, a feature-matching-based localization method is proposed. The geometry relationship between non-visual semantic landmarks is used for iterative landmark matching. The graph optimization algorithm is utilized to enhance the positioning accuracy of modern vehicles on indoor semantic maps.
- (3)
- The proposed non-visual semantic map construction and localization methods are experimentally validated, demonstrating their effectiveness in addressing low-cost indoor localization and navigation issues for modern vehicles, especially in scenarios of indoor parking lots.
2. Related Works
2.1. Semantic Detection and Map Construction
2.2. Indoor Localization
3. Semantic Map Construction and Indoor Localization
3.1. Non-Visual Semantic Landmark Detection
- i.
- It should be reproducible during localization and navigation in the mapping venue;
- ii.
- It can be detected by low-cost inertial and localization sensors with low computational requirements;
- iii.
- The quantity and quality of non-visual semantic landmarks should be sufficient for mapping and localization.
3.1.1. Data Preprocessing
3.1.2. Semantic Landmark Detection
3.2. Single-Trajectory Semantic Map Detection
3.2.1. Wi-Fi Fingerprint Collection
3.2.2. Map Construction
3.3. Localization
3.3.1. Landmark Matching
3.3.2. Graph Optimization-Based Localization
4. Experiments
4.1. Experiments Setup
4.2. Non-Visual Semantic Landmark Detection Result
4.3. Localization in Venue Map
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Ma, W.; Li, Q.; El-Sheimy, N.; Mao, Q.; Li, Y.; Gu, F.; Huang, L.; Zhu, J. Crowdsourcing-Based Indoor Mapping Using Smartphones: A Survey. ISPRS J. Photogramm. Remote Sens. 2021, 177, 131–146. [Google Scholar] [CrossRef]
- Niu, X.; Xie, L.; Wang, J.; Chen, H.; Liu, D.; Chen, R. AtLAS: An Activity-Based Indoor Localization and Semantic Labeling Mechanism for Residences. IEEE Internet Things J. 2020, 7, 10606–10622. [Google Scholar] [CrossRef]
- Yang, L.; Dryanovski, I.; Valenti, R.G.; Wolberg, G.; Xiao, J. RGB-D Camera Calibration and Trajectory Estimation for Indoor Mapping. Auton. Robot. 2020, 44, 1485–1503. [Google Scholar] [CrossRef]
- Gonzalez, P.; Mora, A.; Garrido, S.; Barber, R.; Moreno, L. Multi-LiDAR Mapping for Scene Segmentation in Indoor Environments for Mobile Robots. Sensors 2022, 22, 3690. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kuang, J.; Niu, X.; Behley, J.; Klingbeil, L.; Kuhlmann, H. Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-Mounted IMU. IEEE Robot. Autom. Lett. 2023, 8, 280–287. [Google Scholar] [CrossRef]
- Silva, I.; Pendao, C.; Moreira, A. Real-World Deployment of Low-Cost Indoor Positioning Systems for Industrial Applications. IEEE Sens. J. 2022, 22, 5386–5397. [Google Scholar] [CrossRef]
- Premachandra, H.A.G.C.; Liu, R.; Yuen, C.; Tan, U.-X. UWB Radar SLAM: An Anchorless Approach in Vision Denied Indoor Environments. IEEE Robot. Autom. Lett. 2023, 8, 5299–5306. [Google Scholar] [CrossRef]
- Li, A.; Wang, J.; Xu, M.; Chen, Z. DP-SLAM: A Visual SLAM with Moving Probability towards Dynamic Environments. Inf. Sci. 2021, 556, 128–142. [Google Scholar] [CrossRef]
- Park, J.; Cho, Y.; Shin, Y.-S. Nonparametric Background Model-Based LiDAR SLAM in Highly Dynamic Urban Environments. IEEE Trans. Intell. Transport. Syst. 2022, 23, 24190–24205. [Google Scholar] [CrossRef]
- Xing, Z.; Zhu, X.; Dong, D. DE-SLAM: SLAM for Highly Dynamic Environment. J. Field Robot. 2022, 39, 528–542. [Google Scholar] [CrossRef]
- Han, S.; Xi, Z. Dynamic Scene Semantics SLAM Based on Semantic Segmentation. IEEE Access 2020, 8, 43563–43570. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, X.; Wei, Y.; Wang, C. Generating Indoor Wi-Fi Fingerprint Map Based on Crowdsourcing. Wirel. Netw. 2022, 28, 1053–1065. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, B.; Huang, P.; Xue, W.; Li, Q.; Zhu, J.; Qiu, L. Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization. IEEE Sens. J. 2021, 21, 8479–8490. [Google Scholar] [CrossRef]
- Shit, R.C.; Sharma, S.; Yelamarthi, K.; Puthal, D. AI-Enabled Fingerprinting and Crowdsource-Based Vehicle Localization for Resilient and Safe Transportation Systems. IEEE Trans. Intell. Transport. Syst. 2021, 22, 4660–4669. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Cai, Y.; Wu, H.; Li, Z.; Sotelo, M.A. Visual Map-Based Localization for Intelligent Vehicles from Multi-View Site Matching. IEEE Trans. Intell. Transport. Syst. 2021, 22, 1068–1079. [Google Scholar] [CrossRef]
- Sualeh, M.; Kim, G.-W. Simultaneous Localization and Mapping in the Epoch of Semantics: A Survey. Int. J. Control Autom. Syst. 2019, 17, 729–742. [Google Scholar] [CrossRef]
- Xiong, J.; Cheong, J.W.; Ding, Y.; Xiong, Z.; Dempster, A.G. Efficient Distributed Particle Filter for Robust Range-Only SLAM. IEEE Internet Things J. 2022, 9, 21932–21945. [Google Scholar] [CrossRef]
- Song, W.; Yang, Y.; Fu, M.; Kornhauser, A.; Wang, M. Critical Rays Self-Adaptive Particle Filtering SLAM. J. Intell. Robot. Syst. 2018, 92, 107–124. [Google Scholar] [CrossRef]
- Junior, G.P.C.; Rezende, A.M.C.; Miranda, V.R.F.; Fernandes, R.; Azpurua, H.; Neto, A.A.; Pessin, G.; Freitas, G.M. EKF-LOAM: An Adaptive Fusion of LiDAR SLAM with Wheel Odometry and Inertial Data for Confined Spaces with Few Geometric Features. IEEE Trans. Automat. Sci. Eng. 2022, 19, 1458–1471. [Google Scholar] [CrossRef]
- Lee, H.; Chun, J.; Jeon, K. Experimental Results and Posterior Cramér–Rao Bound Analysis of EKF-Based Radar SLAM with Odometer Bias Compensation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 310–324. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, C.; Shang, G.; Wang, X.; Li, Z.; Xu, C.; Hu, K. SLAM Overview: From Single Sensor to Heterogeneous Fusion. Remote Sens. 2022, 14, 6033. [Google Scholar] [CrossRef]
- Kolakowski, M.; Djaja-Josko, V.; Kolakowski, J. Static LiDAR Assisted UWB Anchor Nodes Localization. IEEE Sens. J. 2022, 22, 5344–5351. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Wang, X.; Li, S.; Zhou, Y.; Chang, H. FGO-GIL: Factor Graph Optimization-Based GNSS RTK/INS/LiDAR Tightly Coupled Integration for Precise and Continuous Navigation. IEEE Sens. J. 2023, 23, 14534–14548. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, J.; Xu, M.; Lin, S.; Chen, Z. InterpolationSLAM: An Effective Visual SLAM System Based on Interpolation Network. Eng. Appl. Artif. Intell. 2022, 115, 105333. [Google Scholar] [CrossRef]
- Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, X.; Wang, J.; Yuen, C.; Li, J. PVI-DSO: Leveraging Planar Regularities for Direct Sparse Visual-Inertial Odometry. IEEE Sens. J. 2023, 23, 17415–17425. [Google Scholar] [CrossRef]
- Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE Trans. Robot. 2017, 33, 249–265. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Chai, W.; Li, C.; Zhang, M.; Sun, Z.; Yuan, H.; Lin, F.; Li, Q. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments. Sensors 2021, 21, 7428. [Google Scholar] [CrossRef]
- Li, C.; Chai, W.; Zhang, M.; Yuan, H.; Lin, F.; Luo, S.; Li, Q. A Novel Method for Distinguishing Indoor Dynamic and Static Semantic Objects Based on Deep Learning and Space Constraints in Visual-Inertial SLAM. J. Intell. Robot. Syst. 2022, 106, 26. [Google Scholar] [CrossRef]
- Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; Rendón-Mancha, J.M. Visual Simultaneous Localization and Mapping: A Survey. Artif. Intell. Rev. 2015, 43, 55–81. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transport. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Chai, W.; Liu, Z.; Jiang, S.; Li, L.; Zhou, J.; Pan, L. The Invention Relates to a Method and System for Identifying Track Signposts. CN201910461999.2. 13 July 2021. [Google Scholar]
- Chai, W.; Liu, Z.; Jiang, S.; Li, L.; Zhou, J.; Pan, L. The Invention Relates to a Method and System for Updating Track Signposts. CN201910461925.9. 1 June 2021. [Google Scholar]
- Zhang, M.; Jia, J.; Chen, J.; Yang, L.; Guo, L.; Wang, X. Real-Time Indoor Localization Using Smartphone Magnetic with LSTM Networks. Neural Comput. Appl. 2021, 33, 10093–10110. [Google Scholar] [CrossRef]
- Shu, M.; Chen, G.; Zhang, Z.; Xu, L. Indoor Geomagnetic Positioning Using Direction-Aware Multiscale Recurrent Neural Networks. IEEE Sens. J. 2023, 23, 3321–3333. [Google Scholar] [CrossRef]
- Zhuang, Y.; Syed, Z.; Georgy, J.; El-Sheimy, N. Autonomous Smartphone-Based WiFi Positioning System by Using Access Points Localization and Crowdsourcing. Pervasive Mob. Comput. 2015, 18, 118–136. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Morelande, M.; Moran, B. Information Geometry of Target Tracking Sensor Networks. Inf. Fusion 2013, 14, 311–326. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Huang, Y.; Fu, H.; Wang, Z. WKNN Indoor Location Algorithm Based on Zone Partition by Spatial Features and Restriction of Former Location. Pervasive Mob. Comput. 2019, 60, 101085. [Google Scholar] [CrossRef]
- Wang, B.; Gan, X.; Liu, X.; Yu, B.; Jia, R.; Huang, L.; Jia, H. A Novel Weighted KNN Algorithm Based on RSS Similarity and Position Distance for Wi-Fi Fingerprint Positioning. IEEE Access 2020, 8, 30591–30602. [Google Scholar] [CrossRef]
- Chai, W.; Li, C.; Li, Q. Multi-Sensor Fusion-Based Indoor Single-Track Semantic Map Construction and Localization. IEEE Sens. J. 2023, 23, 2470–2480. [Google Scholar] [CrossRef]
- Li, C.; Chai, W.; Yang, X.; Li, Q. Crowdsourcing-Based Indoor Semantic Map Construction and Localization Using Graph Optimization. Sensors 2022, 22, 6263. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wang, J.; He, G.; Chang, H.; Zhuang, Y. Sparse Semantic Map Building and Relocalization for UGV Using 3D Point Clouds in Outdoor Environments. Neurocomputing 2020, 400, 333–342. [Google Scholar] [CrossRef]
Type | Key Features | Auxiliary Features | Sensors |
---|---|---|---|
entry/exit | GSV | Light intensity | GNSS receiver, light sensor |
slop entry/exit | Pitch angle | ACC | GYRO, ACC |
road node | Yaw angle | Curvature, scale | GYRO, ACC |
Mall | False Rate | Miss Rate | Error of Location (m) |
---|---|---|---|
mall 1 | 1.90% | 1.90% | 1.39 |
mall 2 | 0.00% | 7.61% | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, G.; Lin, F.; Li, C.; Shao, W.; Chai, W.; Xu, X.; Zhang, M.; Sun, Z.; Li, Q. Multi-Sensor-Assisted Low-Cost Indoor Non-Visual Semantic Map Construction and Localization for Modern Vehicles. Sensors 2024, 24, 4263. https://doi.org/10.3390/s24134263
Shao G, Lin F, Li C, Shao W, Chai W, Xu X, Zhang M, Sun Z, Li Q. Multi-Sensor-Assisted Low-Cost Indoor Non-Visual Semantic Map Construction and Localization for Modern Vehicles. Sensors. 2024; 24(13):4263. https://doi.org/10.3390/s24134263
Chicago/Turabian StyleShao, Guangxiao, Fanyu Lin, Chao Li, Wei Shao, Wennan Chai, Xiaorui Xu, Mingyue Zhang, Zhen Sun, and Qingdang Li. 2024. "Multi-Sensor-Assisted Low-Cost Indoor Non-Visual Semantic Map Construction and Localization for Modern Vehicles" Sensors 24, no. 13: 4263. https://doi.org/10.3390/s24134263