Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods
<p>Experimental laboratory setup.</p> "> Figure 2
<p>Block diagram of the experimental laboratory setup.</p> "> Figure 3
<p>Induction motor fault type. (<b>a</b>) Rotor fault. (<b>b</b>) Bearing fault.</p> "> Figure 4
<p>Data collected from the simulator. (<b>a</b>) Normal data. (<b>b</b>) Rotor fault data. (<b>c</b>) Bearing fault data.</p> "> Figure 5
<p>Block diagram of the fault diagnosis algorithm for an induction motor.</p> "> Figure 6
<p>Support vector machine architecture.</p> "> Figure 7
<p>Multilayer neural network architecture.</p> "> Figure 8
<p>Convolutional neural network architecture.</p> "> Figure 9
<p>Learning structure of the gradient boosting machine.</p> "> Figure 10
<p>Stratified two-fold cross-validation method.</p> "> Figure 11
<p>Graphical user interface of fault diagnosis in induction motor. (<b>a</b>) Front panel of LabView program for fault diagnosis in induction motor graphical user interface. (<b>b</b>) Front panel of LabView program for fault diagnosis in induction motor graphical user interface.</p> "> Figure 12
<p>Results of the fault diagnosis using the optimal SVM, MNN, CNN, GBM, and XGBoost models. (<b>a</b>) Fault diagnosis result of the optimal support vector machine (SVM) model. (<b>b</b>) Fault diagnosis result of multilayer neural network (MNN) model. (<b>c</b>) Fault diagnosis result of convolutional neural network (CNN) model. (<b>d</b>) Fault diagnosis result of the optimal gradient boosting machine (GBM) model. (<b>e</b>) Fault diagnosis result of the optimal XGBoost model.</p> "> Figure 12 Cont.
<p>Results of the fault diagnosis using the optimal SVM, MNN, CNN, GBM, and XGBoost models. (<b>a</b>) Fault diagnosis result of the optimal support vector machine (SVM) model. (<b>b</b>) Fault diagnosis result of multilayer neural network (MNN) model. (<b>c</b>) Fault diagnosis result of convolutional neural network (CNN) model. (<b>d</b>) Fault diagnosis result of the optimal gradient boosting machine (GBM) model. (<b>e</b>) Fault diagnosis result of the optimal XGBoost model.</p> "> Figure 13
<p>Fault diagnosis and results of induction motor using graphical user interface. (<b>a</b>) Results of normal state induction motor fault diagnosis using graphical user inter-face. (<b>b</b>) Results of rotor fault state induction motor fault diagnosis using graphical user interface. (<b>c</b>) Results of bearing fault state induction motor fault diagnosis using graphical user interface.</p> ">
Abstract
:1. Introduction
2. Data Acquisition
3. Induction Motor Fault Diagnosis Algorithm
3.1. Support Vector Machine
3.2. Multilayer Neural Network
3.3. Convolutional Neural Network
3.4. Gradient Boosting Machine
3.5. XGBoost
3.6. Stratified K-Fold Cross Validation
3.7. GUI for Fault Diagnosis in Induction Motor
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SVM | Support vector machine |
MNN | Multilayer neural network |
CNN | Convolutional neural network |
GBM | Gradient boosting machine |
GUI | Graphical user interface |
RBF | Radial bias function |
ReLU | Rectified linear unit |
RMSProp | Root mean square propagation |
NAD | Number of accurately classified data points |
NMD | Number of misclassified data points |
References
- Zamudio-Ramírez, I.; Osornio-Ríos, R.A.; Antonino-Daviu, J.A.; Quijano-Lopez, A. Smart-sensor for the automatic detection of electromechanical faults in induction motors based on the transient stray flux analysis. Sensors 2020, 20, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.R.; Andriollo, M.; Cirrincione, G.; Cirrincione, M.; Tortella, A. A comprehensive review of conventional and intelligence-based approaches for the fault diagnosis and condition monitoring of induction motors. Energies 2022, 15, 8938. [Google Scholar] [CrossRef]
- Halder, S.; Bhat, S.; Zychma, D.; Sowa, P. Broken rotor bar fault diagnosis techniques based on motor current signature analysis for induction motor—A review. Energies 2022, 15, 8569. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms. Mech. Syst. Signal Process. 2017, 94, 464–481. [Google Scholar] [CrossRef]
- Misra, S.; Kumar, S.; Sayyad, S.; Bongale, A.; Jadhav, P.; Kotecha, K.; Abraham, A.; Gabralla, L.A. Fault detection in induction motor using time domain and spectral imaging-based transfer learning approach on vibration data. Sensors 2022, 22, 8210. [Google Scholar] [CrossRef]
- Zarei, J. Induction motors bearing fault detection using pattern recognition techniques. Expert Syst. Appl. 2012, 39, 68–73. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Q.; Qian, L.; Wang, M. Multi-sensor fault diagnosis based on time series in an intelligent mechanical system. Sensors 2022, 22, 9973. [Google Scholar] [CrossRef]
- Patton, R.J. Robust model-based fault diagnosis: The state of the art. I.F.A.C. Proc. Volumes 1994, 27, 1–24. [Google Scholar] [CrossRef]
- Lee, I.S. Fault diagnosis system development of induction motors using discrete wavelet transform and neural network. J. KIIT 2011, 9, 56–61. [Google Scholar]
- Kerboua, A.; Metatla, R.K.; Batouche, M. Fault Diagnosis in Induction Motor using Pattern Recognition and Neural Networks. In Proceedings of the 2018 International Conference on Signal, Image, Vision and their Applications (SIVA), Guelma, Algeria, 26–27 November 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Zhu, J.; Xu, F. Fault diagnosis of motor vibration signals by fusion of spatiotemporal features. Machines 2022, 10, 246. [Google Scholar] [CrossRef]
- Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, M.; Liu, H.; Brumercik, F.; Gutten, M.; Sulowicz, M.; Antonino Daviu, J.A.; et al. Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Appl. Acoust. 2021, 179, 108070. [Google Scholar] [CrossRef]
- Devarajan, G.; Chinnusamy, M.; Kaliappan, L. Detection and classification of mechanical faults of three phase induction motor via pixels analysis of thermal image and adaptive neuro-fuzzy inference system. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4619–4630. [Google Scholar] [CrossRef]
- Shen, L.; Chen, S. A kind of svm fast training method based on samples segmentation learning. In Proceedings of the 4th International Conference on Distance Learning and Education, San Juan, PR, USA, 3–5 October 2010; pp. 6–9. [Google Scholar]
- Jha, R.K.; Swami, P.D. Fault diagnosis and severity analysis of rolling bearings using vibration image texture enhancement and multiclass support vector machines. Appl. Acoust. 2021, 182, 108243. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011, 38, 1876–1886. [Google Scholar] [CrossRef]
- Lim, J.S.; Sohn, J.Y.; Sohn, J.T.; Lim, D.H. Breast Cancer Classification Using Optimal Support Vector Machine. J. Korea Soc. Health Inform. Stat. 2013, 38, 108–121. [Google Scholar]
- Xue, H.; Chen, S.; Yang, Q. Structural regularized support vector machine: A framework for structural large margin classifier. I.E.E.E. Trans. Neural. Netw. 2011, 22, 573–587. [Google Scholar] [CrossRef]
- Tun, W.; Wong, J.K.W.; Ling, S.H. Hybrid random forest and support vector machine modeling for hvac fault detection and diagnosis. Sensors 2021, 21, 8163. [Google Scholar] [CrossRef]
- Madzarov, G.; Gjorgjevikj, D.; Chorbev, I. A multi-class svm classifier utilizing binary decision tree. Informatica 2009, 33, 233–241. [Google Scholar]
- Savas, C.; Dovis, F. The impact of different kernel functions on the performance of scintillation detection based on support vector machines. Sensors 2019, 19, 5219. [Google Scholar] [CrossRef] [Green Version]
- Widodo, A.; Yang, B.-S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 2560–2574. [Google Scholar] [CrossRef]
- Ariza-Colpas, P.P.; Vicario, E.; Oviedo-Carrascal, A.I.; Butt Aziz, S.; Piñeres-Melo, M.A.; Quintero-Linero, A.; Patara, F. human activity recognition data analysis: History, evolutions, and new trends. Sensors 2022, 22, 3401. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Merenda, M.; Porcaro, C.; Iero, D. Edge Machine learning for AI-enabled Iot devices: A review. Sensors 2020, 20, 2533. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, B.; Wang, Z. Analysis and study of perceptron to solve XOR problem, In Proceedings of the 2nd International Workshop on Autonomous Decentralized System, Beijing, China, 7 November 2002; pp 168–173. [CrossRef]
- Cangialosi, F.; Bruno, E.; De Santis, G. Application of machine learning for fenceline monitoring of odor classes and concentrations at a wastewater treatment plant. Sensors 2021, 21, 4716. [Google Scholar] [CrossRef] [PubMed]
- Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil. Mech. Syst. Signal Process. 2007, 21, 2560–2574. [Google Scholar] [CrossRef]
- Ha, J.H.; Kim, Y.H.; Im, H.H.; Choi, D.W.; Lee, Y.H. A method for correcting air-pressure data collected by mini-aws. J. Korean Inst. Intell. Syst. 2016, 26, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lee, J.H.; Wang, D.H.; Lee, I.S. Vehicle simulator and SOC estimation of battery using artificial neural networks. J. KIIT 2021, 19, 51–62. [Google Scholar] [CrossRef]
- Ding, B.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks, 2018. In Proceedings of the Chinese Control and Decision Conference, Shenyang, China, 9–11 June 2018; pp. 1836–1841. [Google Scholar] [CrossRef]
- Yu, Y.; Adu, K.; Tashi, N.; Anokye, P.; Wang, X.; Ayidzoe, M.A. RMAF: Relu-memristor-like activation function for deep learning. IEEE Access 2020, 8, 72727–72741. [Google Scholar] [CrossRef]
- Whitaker, S.; Barnard, A.; Anderson, G.D.; Havens, T.C. Through-ice acoustic source tracking using vision transformers with ordinal classification. Sensors 2022, 22, 4703. [Google Scholar] [CrossRef]
- Dunne, R.A.; Campbell, N.A. On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. Aust Conf. Ther. Neural Netw. Melb. 1997, 181, 1997. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Lee, J.H.; Pack, J.H.; Lee, I.S. Fault diagnosis of induction motor using convolutional neural network. Appl. Sci. 2019, 9, 2950. [Google Scholar] [CrossRef] [Green Version]
- Ajit, A.; Acharya, K.; Samanta, A. A Review of Convolutional Neural Networks International Conference on Emerging Trends in Information Technology and Engineering; IEEE: Vellore, India, 2020; Volume 2020, pp. 1–5. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 4, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natekin, A.; Knoll, A. Gradient boosting machines, a Tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Pham, S.T.; Vo, P.S.; Nguyen, D.N. Effective Electrical submersible pump management using machine learning. Open J. Civ. Eng. 2021, 11, 70–80. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, W.S.; Lee, D. Enhancing accuracy of solar power forecasting by input data preprocessing and competitive model selection methods. Trans. Korean Inst. Electr. Eng. 2022, 71, 1201–1210. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef] [Green Version]
- Chae, J.; Kang, Y.J.; Noh, Y. A deep-learning approach for foot-type classification using heterogeneous pressure data. Sensors 2020, 20, 4481. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. In Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009. [Google Scholar]
- Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front. Nanotechnol. 2009, 4, 532–538. [Google Scholar] [CrossRef]
Model Number | 603C01 |
---|---|
Measurement range | 490 m/s2 |
Frequency range | 0.5–10,000 Hz |
Transverse sensitivity | ≤7% |
Temperature range | −54 °C–121 °C |
Iteration | C, γ | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|---|
1 | 1, 1 | 85.64% | 77.09% | 100% | 87.58% |
1, 2 | 99.19% | 99.67% | 100% | 99.68% | |
1, 3 | 100% | 100% | 100% | 100% | |
1, 4 | 100% | 100% | 100% | 100% | |
1, 5 | 100% | 100% | 100% | 100% | |
1, 6 | 100% | 100% | 100% | 100% | |
2 | 1, 1 | 79.19% | 74.67% | 100% | 84.62% |
1, 2 | 97.74% | 99.51% | 100% | 99.08% | |
1, 3 | 99.51% | 100% | 100% | 99.83% | |
1, 4 | 99.83% | 100% | 100% | 99.94% | |
1, 5 | 99.83% | 100% | 100% | 99.94% | |
1, 6 | 100% | 100% | 100% | 100% |
C, γ | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
1, 1 | 82.41% | 75.88% | 100% | 86.10% |
1, 2 | 98.46% | 99.59% | 100% | 99.35% |
1, 3 | 99.75% | 100% | 100% | 99.91% |
1, 4 | 99.91% | 100% | 100% | 99.97% |
1, 5 | 99.91% | 100% | 100% | 99.97% |
1, 6 | 100% | 100% | 100% | 100% |
Iteration | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
1 | 99.83% | 100% | 99.67% | 98.87% |
2 | 99.51% | 100% | 98.22% | 99.24% |
Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|
99.67% | 100% | 97.49% | 99.05% |
Iteration | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
1 | 100% | 100% | 100% | 100% |
2 | 100% | 100% | 100% | 100% |
Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|
100% | 100% | 100% | 100% |
Iteration | Number of Trees | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|---|
1 | 700 | 99.03% | 99.19% | 100% | 99.40% |
800 | 99.03% | 99.51% | 100% | 99.51% | |
900 | 99.35% | 99.35% | 100% | 99.56% | |
1000 | 99.19% | 99.35% | 100% | 99.51% | |
2 | 700 | 98.38% | 99.35% | 100% | 99.24% |
800 | 98.22% | 99.51% | 100% | 99.24% | |
900 | 98.06% | 99.67% | 100% | 99.24% | |
1000 | 98.06% | 99.67% | 100% | 99.24% |
Number of Trees | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
700 | 98.70% | 99.27% | 100% | 99.32% |
800 | 98.62% | 99.51% | 100% | 99.37% |
900 | 98.70% | 99.51% | 100% | 99.40% |
1000 | 98.62% | 99.51% | 100% | 99.37% |
Iteration | Number of Trees | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|---|
1 | 10 | 72.58% | 61.93% | 100% | 78.17% |
50 | 83.87% | 74.68% | 100% | 86.18% | |
100 | 97.25% | 99.19% | 100% | 98.81% | |
700 | 98.54% | 100% | 100% | 99.51% | |
1000 | 99.19% | 98.70% | 100% | 99.30% | |
2 | 10 | 70.80% | 66.45% | 100% | 79.08% |
50 | 76.77% | 71.94% | 100% | 82.90% | |
100 | 99.19% | 99.35% | 100% | 99.51% | |
700 | 99.67% | 99.51% | 100% | 99.73% | |
1000 | 98.87% | 98.70% | 100% | 99.19% |
Number of Trees | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
10 | 71.69% | 64.19% | 100% | 78.62% |
50 | 80.32% | 73.31% | 100% | 84.54% |
100 | 98.22% | 99.27% | 100% | 99.16% |
700 | 99.11% | 99.76% | 100% | 99.62% |
1000 | 99.03% | 98.70% | 100% | 99.25% |
Method of Classification | Normal | Rotor Fault | Bearing Fault | Average |
---|---|---|---|---|
SVM | 100% | 100% | 100% | 100% |
MNN | 99.67% | 100% | 97.49% | 99.05% |
CNN | 100% | 100% | 100% | 100% |
GBM | 98.70% | 99.51% | 100% | 99.40% |
XGBoost | 99.11% | 99.76% | 100% | 99.62% |
Iteration 1 | Iteration 2 | Average | |
---|---|---|---|
MNN | 0.11637 s | 0.06522 s | 0.09079 s |
SVM | 1.61548 s | 1.68549 s | 1.65048 s |
GBM | 0.09001 s | 0.08999 s | 0.09000 s |
XGBoost | 0.05018 s | 0.05001 s | 0.05009 s |
CNN | 0.51737 s | 0.45484 s | 0.48610 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-C.; Lee, J.-H.; Wang, D.-H.; Lee, I.-S. Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods. Sensors 2023, 23, 2585. https://doi.org/10.3390/s23052585
Kim M-C, Lee J-H, Wang D-H, Lee I-S. Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods. Sensors. 2023; 23(5):2585. https://doi.org/10.3390/s23052585
Chicago/Turabian StyleKim, Min-Chan, Jong-Hyun Lee, Dong-Hun Wang, and In-Soo Lee. 2023. "Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods" Sensors 23, no. 5: 2585. https://doi.org/10.3390/s23052585