A 3.0 µm Pixels and 1.5 µm Pixels Combined Complementary Metal-Oxide Semiconductor Image Sensor for High Dynamic Range Vision beyond 106 dB †
<p>Requirements for luminance.</p> "> Figure 2
<p>(u′, v′) chromaticity diagram, also known as the CIE 1976 UCS (uniform chromaticity scale) diagram.</p> "> Figure 3
<p>Pixel configuration.</p> "> Figure 4
<p>Pixel array.</p> "> Figure 5
<p>Sensor block diagram.</p> "> Figure 6
<p>Chip implementation.</p> "> Figure 7
<p>Cross-section of quadrate–square pixel.</p> "> Figure 8
<p>OCL shape differences. (<b>a</b>) Square OCL, (<b>b</b>) Quadrate OCL.</p> "> Figure 9
<p>Relationship between OCL shape and Quantum Efficiency.</p> "> Figure 10
<p>Pixel circuit.</p> "> Figure 11
<p>Pixel drive line layout.</p> "> Figure 12
<p>Square pixel readout. (<b>a</b>) Pixel circuit of square pixel. (<b>b</b>) Potential diagram of square pixel.</p> "> Figure 13
<p>Timing sequence.</p> "> Figure 14
<p>Photo response of quadrate pixels.</p> "> Figure 15
<p>Quantum efficiency of quadrate pixel.</p> "> Figure 16
<p>Macbeth chart at 6500 K.</p> "> Figure 17
<p>OFG dependency of dark current and PRNU. (<b>a</b>) OFG dependency with vertical transfer gate. (<b>b</b>) OFG dependency with planar transfer gate.</p> "> Figure 18
<p>OFG dependency of full-well capacity.</p> "> Figure 19
<p>Definition of overflow charge location and potential difference.</p> "> Figure 20
<p>Exposure time and potential difference that can prevent overflow.</p> "> Figure 21
<p>Potential difference between TGL and OFG and PRNU. (<b>a</b>) Actual setting. (<b>b</b>) Simulation.</p> "> Figure 22
<p>OFG dependency of dark current in the FC.</p> "> Figure 23
<p>White spot of FC. (<b>a</b>) VTG structure. (<b>b</b>) PTG structure.</p> "> Figure 24
<p>Cross-section of square pixel.</p> "> Figure 25
<p>OFG dependency on FWC and PRNU.</p> "> Figure 26
<p>Photo response of square pixels.</p> "> Figure 27
<p>SNR curve of synthesized signal.</p> "> Figure 28
<p>Quantum efficiency (square pixel).</p> "> Figure 29
<p>Image of a moving object. (<b>a</b>) One-shot HDR. (<b>b</b>) DOL HDR. (<b>c</b>) Quadrate–square HDR.</p> "> Figure 30
<p>Motion detection flow.</p> "> Figure 31
<p>Image of a road sign. (<b>a</b>) 3 μm pixel. (<b>b</b>) 2.25 μm pixel. (<b>c</b>) Quadrate–square pixel.</p> "> Figure 32
<p>The interpolation process. (<b>a</b>) 3.0 μm Bayer array. (<b>b</b>) Quadrate–square pixel array.</p> "> Figure 33
<p>Synthesized image. (<b>a</b>) Square pixel PD + FC + Quadrate pixel RGC. (<b>b</b>) Quadrate pixel Gray image.</p> ">
Abstract
:1. Introduction
2. Sensor Architecture
2.1. New Concept
2.2. Sensor Configuration
2.3. Pixel Circuit
2.4. Pixel Read-Out Method
2.4.1. Square Pixel Read-Out Method
2.4.2. Quadrate–Square Pixel Read-Out Method
3. Sensor Characteristics
3.1. Quadrate Pixel Characterristics
3.2. Square Pixel Characterristics
3.2.1. Transfer Structure of Overflow Gate for PD Characteristics
3.2.2. Analysis and Verification
3.2.3. Transfer Structure of Overflow Gate for FC Characteristics
3.2.4. Square Pixel Characteristics
3.3. Quadrate–Square Pixel Characteristics
3.4. Synthesized Image
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takayanagi, I.; Kuroda, R. HDR CMOS Image Sensors for Automotive Applications. IEEE Trans. Electron Devices 2022, 69, 2815–2823. [Google Scholar] [CrossRef]
- Fujihara, Y.; Murata, M.; Nakayama, S.; Kuroda, R.; Sugawa, S. An Over 120 dB Single ExposureWide Dynamic Range CMOS Image Sensor with Two-Stage Lateral Overflow Integration Capacitor. IEEE Trans. Electron Devices 2021, 68, 152–157. [Google Scholar] [CrossRef]
- Takayanagi, I.; Miyauchi, K.; Okura, S.; Mori, K.; Nakamura, J.; Sugawa, S. A 120-ke- Full-Well Capacity 160 V/e- Conversion Gain 2.8 m Backside-Illuminated Pixel with a Lateral Overflow Integration Capacitor. Sensors 2019, 19, 5572. [Google Scholar] [CrossRef] [PubMed]
- Sugawa, S.; Akahane, N.; Adachi, S.; Mori, K.; Ishiuchi, T.; Mizobuchi, K. A 100 dB dynamic range CMOS image sensor using a lateral overflow integration capacitor. In Proceedings of the ISSCC, 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; IEEE: New York, NY, USA, 2005; pp. 352–603. [Google Scholar]
- Akahane, N.; Sugawa, S.; Adachi, S.; Mori, K.; Ishiuchi, T.; Mizobuchi, K. A sensitivity and linearity improvement of a 100-dBdynamic range CMOS image sensor using a lateral overflow integration capacitor. IEEE J. Solid-State Circuits 2006, 41, 851–858. [Google Scholar] [CrossRef]
- Innocent, M.; Velichko, S.; Lloyd, D.; Beck, J.; Hernandez, A.; Vanhoff, B.; Silsby, C.; Oberoi, A.; Singh, G.; Gurindagunta, S.; et al. Automotive 8.3 MP CMOS Image Sensor with 150 dB Dynamic Range and Light Flicker Mitigation. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–15 December 2021; p. 30. [Google Scholar]
- Innocent, M.; Velichko, S.; Anderson, G.; Beck, J.; Hernandez, A.; Vanhoff, B.; Silsby, C.; Oberoi, A.; Singh, G.; Gurindagunta, S.; et al. Automotive CMOS Image Sensor Family with 2.1 μm LFM Pixel,150 dB Dynamic Range and High Temperature Stability. In Proceedings of the International Image Sensor Workshop (IISW), Scotland, UK, 21–25 May 2023. [Google Scholar]
- Willassen, T.; Solhusvik, J.; Johansson, R.; Yaghmai, S.; Rhodes, H.; Manabe, S.; Mao, D.; Lin, Z.; Yang, D.; Cellek, O.; et al. A 1280 × 1080 4.2 μm split-diode pixel HDR sensor in 110 nm BSI CMOS process. In Proceedings of the International Image Sensor Workshop (IISW), Vaals, The Netherlands, 8–11 June 2015; pp. 377–380. [Google Scholar]
- Sakano, Y.; Toyoshima, T.; Nakamura, R.; Asatsuma, T.; Hattori, Y.; Yamanaka, T.; Yoshikawa, R.; Kawazu, N.; Matsuura, T.; Iinuma, T.; et al. A 132dB Single-Exposure-Dynamic-Range CMOS Image Sensor with High Temperature Tolerance. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 106–108. [Google Scholar]
- Iida, S.; Sakano, Y.; Asatsuma, T.; Takami, M.; Yoshiba, I.; Ohba, N.; Mizuno, H.; Oka, T.; Yamaguchi, K.; Suzuki, A.; et al. A 0.68e-rms random-noise 121dB dynamic-range sub-pixel architecture CMOS image sensor with LED flicker mitigation. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 221–224. [Google Scholar]
- Oh, Y.; Lim, J.; Park, S.; Yoo, D.; Lim, M.; Park, J.; Kim, S.; Jung, M.; Kim, S.; Lee, J.; et al. A 140 dB Single-Exposure Dynamic-Range CMOS Image Sensor with In-Pixel DRAM Capacitor. In Proceedings of the 2022 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 37.7.1–37.7.4. [Google Scholar]
- Yoo, D.; Jang, Y.; Kim, Y.; Shin, J.; Park, E.; Lee, K.; Park, S.; Shin, S.; Kim, S.; Park, J.; et al. Automotive 2.1μm Full-Depth Deep Trench Isolation CMOS Image Sensor with a Single-Exposure Dynamic-Range of 120 dB. In Proceedings of the International Image Sensor Workshop (IISW), Scotland, UK, 21–25 May 2023. [Google Scholar]
- Solhusvik, J.; Willassent, T.; Mikkelsen, S.; Wilhelmsen, M.; Manabe, S.; Mao, D.; He, Z.; Mabuchi, K.; Hasegawa, T. A 1280 × 960 2.8 µm HDR CIS with DCG and Split-Pixel Combined. In Proceedings of the International Image Sensor Workshop (IISW), Snowbird, UT, USA, 23–27 June 2019; Volume 32, pp. 254–257. [Google Scholar]
- Innocent, M.; Rodriguez, A.; Guruaribam, D.; Rahman, M.; Sulfridge, M.; Borthakur, S.; Gravelle, B.; Goto, T.; Dougherty, N.; Desjardin, B.; et al. Pixel with nested photo diodes and 120 dB single exposure dynamic range. In Proceedings of the International Image Sensor Workshop (IISW), Snowbird, UT, USA, 23–27 May 2019; Volume 13, pp. 95–98. [Google Scholar]
Priority | Parameter | Unit | RGCGray | RGBGray | RGGB | RGCB |
---|---|---|---|---|---|---|
1 | Illuminance saturation for LFM | cd/m2 | 5600 Gray | 5600 Gray | 1060 Blue | 1060 Blue |
2 | Sensitivity for low light scene | e−/lux·s | 10,800 Clear | 6500 Green | 6500 Green | 10,800 Clear |
3 | Color reproducibility | - | good | best | best | best |
Parameter | Value | |
---|---|---|
Quadrate Pixel | Square Pixel | |
Power supply | 2.9 V/1.8 V/1.2 V | |
Process technology | 90 nm 4Cu 1AL CMOS BSI | |
Pixel pitch | 1.5 μm | 3.0 μm |
Pixel array | 4.61 M | 1.15 M |
Color filter | Red, green, clear, gray | Clear |
Sensitivity ratio | 20 times | non |
In-pixel capacitor | non | MOS |
Conversion gain | 81 μV/e | 83 μV/e (PD), 5.7 μV/e (FC) |
Random noise @RT | 1.4 e−rms | 1.4 e−rms |
Sensitivity (3200 K with IRCF) | 108,00 e−/lx·s (clear) 550 e−/lx·s (gray) | 40,400 e−/lx·s |
Quantum efficiency | 82% | 85% |
Full-well capacity | 9.4 K e− | 1.35 K (PD),280 K e− (FC) |
Real full-well capacity | 188 Ke− (gray) | 1.35 K (PD),280 K e− (FC) |
Dynamic range (single exp.) | 103 (gray) dB | 106 dB |
Parameter | Unit | This Work | IEDM 2021 | ISSCC 2020 | IISW 2019 | ||
---|---|---|---|---|---|---|---|
[6] | [9] | [13] | |||||
Pixel pitch | μm | 3 | 1.5 | 2.1 | 3 | 2.8 | |
Color | - | Clear | RGCGray | RGGB RCCB | RGGB | RGGB | |
HDR Technology | Sensitivity ratio | Times | non | 20 | non | 14.5 | 100 |
In-pixel capacitor | - | MOS | non | MIM | MOS | non | |
Random noise @RT | e− rms | 1.3 | 1.4 | - | 0.6 | 0.83 | |
Clear or green sensitivity | e−/lx·s | 40,400 | 10,800 | N/A | 38,000 | 24,600 | |
Full-well capacity | e− | 250 K | 9.4 K | 600 K | 165.8 K | 7.9 K | |
Real full-well capacity | e− | 250 K | 188 K | 600 K | 2404 K | 790 K | |
Dynamic range (single exp.) | dB | 106 | 103 | 110 | 132 | 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iida, S.; Kawamata, D.; Sakano, Y.; Yamanaka, T.; Nabeyoshi, S.; Matsuura, T.; Toshida, M.; Baba, M.; Fujimori, N.; Basavalingappa, A.; et al. A 3.0 µm Pixels and 1.5 µm Pixels Combined Complementary Metal-Oxide Semiconductor Image Sensor for High Dynamic Range Vision beyond 106 dB. Sensors 2023, 23, 8998. https://doi.org/10.3390/s23218998
Iida S, Kawamata D, Sakano Y, Yamanaka T, Nabeyoshi S, Matsuura T, Toshida M, Baba M, Fujimori N, Basavalingappa A, et al. A 3.0 µm Pixels and 1.5 µm Pixels Combined Complementary Metal-Oxide Semiconductor Image Sensor for High Dynamic Range Vision beyond 106 dB. Sensors. 2023; 23(21):8998. https://doi.org/10.3390/s23218998
Chicago/Turabian StyleIida, Satoko, Daisuke Kawamata, Yorito Sakano, Takaya Yamanaka, Shohei Nabeyoshi, Tomohiro Matsuura, Masahiro Toshida, Masahiro Baba, Nobuhiko Fujimori, Adarsh Basavalingappa, and et al. 2023. "A 3.0 µm Pixels and 1.5 µm Pixels Combined Complementary Metal-Oxide Semiconductor Image Sensor for High Dynamic Range Vision beyond 106 dB" Sensors 23, no. 21: 8998. https://doi.org/10.3390/s23218998
APA StyleIida, S., Kawamata, D., Sakano, Y., Yamanaka, T., Nabeyoshi, S., Matsuura, T., Toshida, M., Baba, M., Fujimori, N., Basavalingappa, A., Han, S., Katayama, H., & Azami, J. (2023). A 3.0 µm Pixels and 1.5 µm Pixels Combined Complementary Metal-Oxide Semiconductor Image Sensor for High Dynamic Range Vision beyond 106 dB. Sensors, 23(21), 8998. https://doi.org/10.3390/s23218998