Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters
<p>PEH road. (<b>a</b>) Schematic of PEH road; (<b>b</b>) schematic of internal force of the PEH.</p> "> Figure 2
<p>The PEH designed for road energy harvesting.</p> "> Figure 3
<p>Connection mode of multilayer stacked piezoelectric ceramics. (<b>a</b>) Series connection mode; (<b>b</b>) parallel connection mode.</p> "> Figure 4
<p>The test system.</p> "> Figure 5
<p>Structure of the PEH. (<b>a</b>) Diagram of the PEH. (<b>b</b>) Arrangement of piezoelectric units in the PEH.</p> "> Figure 6
<p>Diagram of the laboratory pavement loading test.</p> "> Figure 7
<p>Piezoelectric energy collection circuit. (<b>a</b>) Schematic of the circuit. (<b>b</b>) The PCB of the circuit.</p> "> Figure 8
<p>The specimens of Test A.</p> "> Figure 9
<p>Comparison of electrical properties of different connection modes: (<b>a</b>) open peak–peak voltages of A-1 and A-2; (<b>b</b>) charge variations of A-1 and A-2; (<b>c</b>) generated electrical energy of A-1 and A-2.</p> "> Figure 9 Cont.
<p>Comparison of electrical properties of different connection modes: (<b>a</b>) open peak–peak voltages of A-1 and A-2; (<b>b</b>) charge variations of A-1 and A-2; (<b>c</b>) generated electrical energy of A-1 and A-2.</p> "> Figure 10
<p>The specimens of Test B.</p> "> Figure 11
<p>Comparison of electrical properties of stack piezoelectric units with different layers: (<b>a</b>) the open peak–peak voltage of B-1, B-2 and B-3; (<b>b</b>) charge variation of B-1, B-2 and B-3; (<b>c</b>) generated electric energy of B-1, B-2 and B-3.</p> "> Figure 12
<p>The specimens of test C.</p> "> Figure 13
<p>Comparison of electrical properties of stack piezoelectric unites with the same volume and different height to cross section ratio: (<b>a</b>) the open peak–peak voltage of C-1, C-2 and C-3; (<b>b</b>) charge variation of C-1, C-2 and C-3; (<b>c</b>) generated electrical energy of C-1, C-2 and C-3.</p> "> Figure 14
<p>The number of piezoelectric units from 8 to 15.</p> "> Figure 15
<p>The electric energy signal of the PEH with different numbers of units.</p> "> Figure 16
<p>The laboratory pavement loading test of the PEH road. (<b>a</b>) The accelerated pavement testing device. (<b>b</b>) The laboratory test road. (<b>c</b>) Monitor system of the voltage. (<b>d</b>) Voltage waveform of the energy storage capacitor.</p> "> Figure 17
<p>The voltage of the supercapacitor.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Multilayer Stack Structure
2.3. Theoretical Analysis
2.4. Experimental Method
2.4.1. Piezoelectric Unit Test
2.4.2. PEH Test
2.4.3. Laboratory Pavement Loading Test
3. Determination of Structural Parameters of Piezoelectric Unit
3.1. Test A: Determination of Piezoelectric Unit Connection Mode
3.2. Test B: Determination of Number of Piezoelectric Unit Stacking Layers for Parrallel Connection Mode
3.3. Test C: Determination of Height to Cross-Sectional Area Ratio of Stacking Structure
4. Determination of the Number of the Piezoelectric Units in One PHE
5. Power Generation Performance Test of PEH in Laboratory Pavement under Moving Load
6. Conclusions
- (1)
- Under the action of automobile axle load, the columnar piezoelectric unit produced pulse electrical energy with high voltage and very low current, which is unfavorable for energy collection and utilization. The results show that the multi-layer stacked parallel structure should be adopted. When the total height is constant, increasing the number of layers and decreasing the thickness of the layer will not increase the total energy, but it can play a role of reducing the voltage and increasing the current, so as to facilitate the collection and utilization of electric energy.
- (2)
- For one piezoelectric unit, when the total volume of the piezoelectric ceramic and the load is constant, the charge does not change with the ratio of height to cross-sectional area. However, the voltage and the generated electric energy is increased with the increasing of the ratio of the height to the cross-sectional area, which means that the piezoelectric unit should be designed slenderer to obtain more electric energy, so as to improve the piezoelectric material utilization.
- (3)
- For one PEH with all units connected in parallel mode, by reducing the number of piezoelectric units, the energy collection efficiency is improved. At the same time, the high compressive strength of the PZT is fully utilized to improve the utilization rate of materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Li, X.; Zhang, L.; Qian, Y.; Qi, Y.; Kouhestani, H.S.; Shi, X.; Gui, X.; Wang, D.; Zhong, J. Performance evaluation of bitumen with a homogeneous dispersion of carbon nanotubes. Carbon 2020, 158, 465–471. [Google Scholar] [CrossRef]
- Yang, Q.; Hong, B.; Lin, J.; Wang, D.; Zhong, J.; Oeser, M. Study on the reinforcement effect and the underlying mechanisms of a bitumen reinforced with recycled glass fiber chips. J. Clean. Prod. 2020, 251, 119768. [Google Scholar] [CrossRef]
- Lu, G.; Fan, Z.; Sun, Z.; Liu, P.; Leng, Z.; Wang, D.; Oeser, M. Improving the polishing resistance of cement mortar by using recycled ceramic. Resour. Conserv. Recycl. 2020, 158, 104796. [Google Scholar] [CrossRef]
- Teso-Fz-Betoño, D.; Aramendia, I.; Martinez-Rico, J.; Fernandez-Gamiz, U.; Zulueta, E. Piezoelectric Energy Harvesting Controlled with an IGBT H-Bridge and Bidirectional Buck–Boost for Low-Cost 4G Devices. Sensors 2020, 20, 7039. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, W.; Zhang, X.; Tong, X. Optimization and Experiment of a Novel Compliant Focusing Mechanism for Space Remote Sensor. Sensors 2020, 20, 6826. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, Q.; Zhang, C.; Lu, G.; Ye, Z.; Chen, Y.; Wang, L.; Cao, D. The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and Machine Learning Methods in Pavement Monitoring and Analysis. Engineering 2020. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, X.; Tu, H.; Yang, Z. Concept and Framework of Smart Pavement. J. Tongji Univ. Natl. Sci. 2017, 45, 1131–1135. [Google Scholar]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, M.; Jiménez, F.; Pardo, L.; Ochoa, P.; González, A.; de Frutos, J. A New Prospect in Road Traffic Energy Harvesting Using Lead-Free Piezoceramics. Materials 2019, 12, 3725. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Wang, L. Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Appl. Energy 2016, 174, 101–107. [Google Scholar] [CrossRef]
- Jung, I.; Shin, Y.; Kim, S.; Choi, J.; Kang, C. Flexible piezoelectric polymer-based energy harvesting system for roadway applications. Appl. Energy 2017, 197, 222–229. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Zhou, B.; Wei, Y.; Zhao, Q. A preliminary study on the highway piezoelectric power supply system. Int. J. Pavement Res. Technol. 2018, 11, 168–175. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Q. Modeling a new energy harvesting pavement system with experimental verification. Appl. Energy 2017, 208, 1071–1082. [Google Scholar] [CrossRef]
- Roshani, H.; Dessouky, S.; Montoya, A.; Papagiannakis, A. Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Appl. Energy 2016, 182, 210–218. [Google Scholar] [CrossRef]
- Roshani, H.; Jagtap, P.; Dessouky, S.; Montoya, A.; Papagiannakis, A. Theoretical and experimental evaluation of two roadway piezoelectric-based energy harvesting prototypes. J. Mater. Civ. Eng. 2018, 30, 04017264. [Google Scholar] [CrossRef]
- Abramovich, H.; Harnes, I. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth. Materials 2018, 11, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Chen, J.; Zou, X. Modeling the Piezoelectric Cantilever Resonator with Different Width Layers. Sensors 2021, 21, 87. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, Q.; Yang, H.; Wang, D.; Oeser, M.; Wang, L.; Tan, Y. Numerical Study on Influence of Piezoelectric Energy Harvester on Asphalt Pavement Structural Responses. J. Mater. Civ. Eng. 2019, 31, 04019008. [Google Scholar] [CrossRef]
- Lian, Y.; He, X.; Shi, S.; Li, X.; Yang, Z.; Sun, J. A Multi-Parameter Perturbation Solution for Functionally Graded Piezoelectric Cantilever Beams under Combined Loads. Materials 2018, 11, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Guo, M.; Wang, L.; Hou, Y.; Zhao, Q.; Cao, D.; Zhou, B.; Wang, D. Investigation on the factors influencing the performance of piezoelectric energy harvester. Road. Mater. Pavement 2017, 18, 180–189. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Typical Value |
---|---|---|---|
Density | ρ | 103 kg/m3 | 7.45 |
Curie temperature | Tc | °C | 200 |
Quality factor | Qm | / | 70 |
Relative permittivity | / | 4500 | |
Electro-mechanical coupling factor | k33 | / | 0.65 |
Piezoelectric constant | d33 | 10−12 C/N | 670 |
Test | Sample No. | Single Size (mm) | Number of Layers | Total Size (mm) | Connection Mode |
---|---|---|---|---|---|
A | A-1 | Φ20.00 × 7.50 | 3 | Φ20.00 × 22.50 | Parallel |
A-2 | Φ20.00 × 7.50 | 3 | Φ20.00 × 22.50 | Series |
Test | Sample No. | Loading Model | Load Amplitude (kN) | Mean Load (kN) | Frequency (Hz) | Applied Force (Kn) | Preload (kN) |
---|---|---|---|---|---|---|---|
A | A-1, A-2 | Sinusoidal load | 0.25 | 0.75 | 10 | 0.5 | 0.5 |
1.00 | 1.50 | 10 | 2.0 | 0.5 | |||
1.50 | 2.00 | 10 | 3.0 | 0.5 |
Test | Sample No. | Single Size (mm) | Number of Layers | Total Size (mm) | Connection Mode |
---|---|---|---|---|---|
B | B-1 | Φ20.00 × 7.5 | 3 | Φ20.00 × 22.50 | parallel |
B-2 | Φ20.00 × 5.625 | 4 | Φ20.00 × 22.50 | parallel | |
B-3 | Φ20.00 × 4.50 | 5 | Φ20.00 × 22.50 | parallel |
Test | Sample No. | Loading Model | Load Amplitude (kN) | Mean Load (kN) | Frequency (Hz) | Applied Force (kN) | Preload (kN) |
---|---|---|---|---|---|---|---|
B | B-1, B-2, B-3 | Sinusoidal load | 0.25 | 0.75 | 10 | 0.5 | 0.5 |
1.00 | 1.50 | 10 | 2.0 | 0.5 | |||
1.50 | 2.00 | 10 | 3.0 | 0.5 |
Force (kN) | Ratio of Open Circuit Voltage | Ratio of Charge |
---|---|---|
UB-1:UB-2:UB-3 | QB-1:QB-2:QB-3 | |
0.50 | 1/3:1.12/4:1.08/5 | 3:4.10:5.10 |
2.00 | 1/3:1.13/4:1.07/5 | 3:4.15:5.08 |
3.00 | 1/3:1.18/4:1.19/5 | 3:4.05:5.30 |
Test | Sample No. | Single Size (mm) | Number of Layers | Total Size (mm) | H/CSa Ratio * | Connection Mode |
---|---|---|---|---|---|---|
C | C-1 | Φ15.87 × 7.94 | 4 | Φ15.87 × 31.76 | 0.161 | series |
C-2 | Φ20.00 × 5.00 | 4 | Φ20.00 × 20.00 | 0.064 | series | |
C-3 | Φ25.20 × 3.15 | 4 | Φ25.20 × 12.60 | 0.025 | series |
Test | Sample No. | Loading Model | Load Amplitude (kN) | Mean Load (kN) | Frequency (Hz) | Applied Force (kN) | Preload (kN) |
---|---|---|---|---|---|---|---|
C | C-1, C-2, C-3 | Sinusoidal load | 0.25 | 0.75 | 10 | 0.5 | 0.5 |
0.5 | 1 | 10 | 1.0 | 0.5 | |||
0.75 | 1.25 | 10 | 1.5 | 0.5 | |||
1 | 1.5 | 10 | 2.0 | 0.5 |
Force | Ratio of Open Circuit Voltage | Ratio of Generated Electrical Energy |
---|---|---|
(kN) | UC-1:UC-2:UC-3 | EC-1:EC-2:EC-3 |
0.50 | 4.51:2.39:1.00 | 4.08:2.50:1.00 |
1.00 | 4.40:2.37:1.00 | 4.10:2.55:1.00 |
1.50 | 4.36:2.32:1.00 | 4.03:2.50:1.00 |
2.00 | 4.28:2.29:1.00 | 3.84:2.50:1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wei, Y.; Zhang, W.; Ai, Y.; Ye, Z.; Wang, L. Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters. Sensors 2021, 21, 2876. https://doi.org/10.3390/s21082876
Yang H, Wei Y, Zhang W, Ai Y, Ye Z, Wang L. Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters. Sensors. 2021; 21(8):2876. https://doi.org/10.3390/s21082876
Chicago/Turabian StyleYang, Hailu, Ya Wei, Weidong Zhang, Yibo Ai, Zhoujing Ye, and Linbing Wang. 2021. "Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters" Sensors 21, no. 8: 2876. https://doi.org/10.3390/s21082876
APA StyleYang, H., Wei, Y., Zhang, W., Ai, Y., Ye, Z., & Wang, L. (2021). Development of Piezoelectric Energy Harvester System through Optimizing Multiple Structural Parameters. Sensors, 21(8), 2876. https://doi.org/10.3390/s21082876