A Weighted and Distributed Algorithm for Range-Based Multi-Hop Localization Using a Newton Method
<p>Multi-hop WSN topologies, where each connected network contains 95 unlocalized sensors and five anchor nodes. (<b>a</b>) Anisotropic circular connected network with sensor and anchor nodes randomly distributed in a circular shape. (<b>b</b>) Isotropic uniform distributed network with sensor and anchor nodes randomly distributed over a square area of 40,000 m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>.</p> "> Figure 2
<p>Methodology followed to test <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> spent by algorithms using a setup of 10 networks for both circular and uniform node distributions.</p> "> Figure 3
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop isotropic networks with R = 35 m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop isotropic networks with R = 35 m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop isotropic networks with <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>45</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop isotropic networks with <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>45</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> vs. Iterations of algorithms using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Θ</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> considering the average of 10 independent isotropic networks. (<b>a</b>) Corresponds to R = 35 m and (<b>b</b>) R = 45 m.</p> "> Figure 8
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop anisotropic networks with R = 35 m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop anisotropic networks with R = 35 m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop anisotropic networks with R = 45 m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 11
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>I</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> after running five iterative algorithms over 10 multi-hop anisotropic networks with <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>45</mn> </mrow> </semantics></math> m and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. Outliers levels are increased by steps of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> from <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p><math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> </mrow> </semantics></math> vs. Iterations of algorithms using <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Θ</mi> <mo>=</mo> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>n</mi> <mi>f</mi> <mi>e</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> considering the average of 10 independent anisotropic networks. (<b>a</b>) Corresponds to R = 35 m and (<b>b</b>) R = 45 m.</p> ">
Abstract
:1. Introduction
- A novel localization method is introduced that is robust to outliers. To remove or mitigate the influence of possible atypical measurements, the proposed method uses two kind of weights: one is based on the average hop-proximity to the anchors, and the other is based on the determination of the degree of outlierness degree in the noisy distances.
- The proposed method is based on the Newton method, which improves the unknown sensors’ positions in a few iterations, even though when rough initial estimates are given.
- The method demonstrates good performance under both isotropic and anisotropic topologies.
2. Reducing the Impact of Outliers in the Estimation Process
3. The Range-Based Localization Problem
4. A Robust and Distributed Localization Algorithm Based on the Newton Method
Algorithm 1 Sensor refining its position estimates. |
Input: |
Output: Refined version of |
1: Initialize: |
2: Compute: for all from (19) |
3: n = 0 |
4: repeat |
5: |
6: Compute: from (20) and (21) |
7: Compute: from (23) |
8: |
9: Solve: |
10: |
11: |
12: until |
5. Computational Complexity
6. Range-Based Multi-Hop Network Performance
6.1. Range-Based Multi-Hop Localization over Randomly and Uniformly Distributed Sensor Networks
6.2. Range-Based Multi-Hop Localization over Irregular Topologies of Sensor Networks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms and Symbols
AoA | Angle of Arrival | Set of unknown sensors | |
DV’Hop | Distance Vector-Hop | N | Number of unknown sensors in the network |
DWDSCL | Distributed Weighted DSCL algorithm | M | Number of anchor nodes in the network |
GPS | Global Positioning System | Set of M anchor nodes | |
LM | Levenberg-Marquardt | Position estimate for the unknown sensor | |
ln | Natural Logarithm | Data set of measurements | |
MLE | Maximum Likelihood Estimation | Set of anchor indexes | |
min | Minimize | Unknown sensor i | |
NLOS | Non Line of Sight | True position of | |
RF | Radio Frequency | Anchor node k | |
RELM | Regularised Extreme Learning Machine | Set of neighboring sensors of | |
RLS | Robust Least Squares | Set of weights corresponding to the neighbors of sensor | |
RMSE | Root Mean Square Error | True position of | |
RSS | Receive Signal Strength | min | Minimize |
RWNM | Robust weighted Newton Method | Norm 2 | |
SOCP | Second-Order Cone Programming | Threshold for the stopping criterion | |
TDoA | Time Difference of Arrival | Distance errors with neighboring sensors of | |
ToA | Time of Arrival | The median of distance errors of | |
WSN | Wireless Sensor Network | Scaling or weighted parameter for | |
Root Mean Square Error average | |||
Iterations average | |||
Noisy distance between the sensor and the anchor | |||
True distance between the sensor and the sensor | |||
Noisy distance between two sensors and | |||
Weighted value for | |||
Weighted value for | |||
Subset of | |||
Subset of | |||
Random variable with standard Gaussian distribution | |||
Standard-deviation of the distance error | |||
Scalar parameter | |||
Outlier level | |||
Cardinality | |||
Big-O | |||
Number of iterations | |||
Set of scaling parameters | |||
Maximum number of iterations to stop the algorithm | |||
Random variable with standard Gaussian distribution |
References
- Nagireddy, V.; Parwekar, P. A Survey on Range-Based and Range-Free Localization Techniques. Int. J. Innov. Adv. Comput. Sci. 2017, 6, 2347–8616. [Google Scholar]
- Garg, M.; Gorshi, E.-A.; Singh, E.-M. A Review on Localization Techniques in WSN. IJESC 2017, 6, 2321–3361. [Google Scholar]
- Laaouafy, M.; Lakrami, F.; Labouidya, O.; Elkamoun, N.; Iqdour, R. Comparative study of localization methods in WSN using Cooja simulator. In Proceedings of the 7th Mediterranean Congress of Telecommunications (CMT), Fez, Morocco, 24–25 October 2019; pp. 1–5. [Google Scholar]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-Harvesting Wireless Sensor Networks (EH-WSNs) A Review. ACM Trans. Sens. Netw. 2018, 14, 1–50. [Google Scholar] [CrossRef]
- Akkaya, K.; Younis, M. A survey on routing protocols for wireless sensor networks. In Proceedings of the 7th Mediterranean Congress of Telecommunications (CMT), Fez, Morocco, 24–25 October 2005; Volume 3, pp. 325–349. [Google Scholar]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Shen, Y.; Su, X.; Esposito, C.; Choi, C. A Localization Based on Unscented Kalman Filter and Particle Filter Localization Algorithms. IEEE Access 2019, 8, 2233–2246. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Wang, Z.; Zhang, X.-Y. A hybrid algorithm of GA+ simplex method in the WSN localization. Int. J. Distrib. Sens. Netw. 2015, 11, 731–894. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, X.; Wang, W. An Improved Centroid Localization Algorithm for WSN. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp. 1120–1123. [Google Scholar]
- Lu, S.Y.; Xie, J.Y.; Pang, L.L. An improved WSN localization algorithm). In Proceedings of the 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC), Beijing, China, 4–6 November 2018; pp. 392–396. [Google Scholar]
- Langendoen, K.; Reijers, N. Distributed localization in wireless sensor networks: A quantitative comparison. Comput. Netw. 2003, 43, 499–518. [Google Scholar] [CrossRef]
- Cheikhrouhou, O.; Bhatti, M.G.; Alroobaea, R. A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors 2018, 18, 1469. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, D.; Nath, B. DV based positioning in ad hoc networks. Telecommun. Syst. 2003, 22, 267–280. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, Y.; Wang, L.; Shu, L.; Hara, T. Removing Heavily Curved Path: Improved DV-hop Localization in Anisotropic Sensor Networks. In Proceedings of the Seventh International Conference on Mobile Ad-hoc and Sensor Networks, Beijing, China, 16–18 December 2011; pp. 75–82. [Google Scholar]
- Ayadi, A.; Ghorbel, O.; Obeid, A.F.M.; Abid, M. Outlier detection approaches for wireless sensor networks: A survey. Comput. Netw. 2017, 129, 319–333. [Google Scholar] [CrossRef]
- Lim, H.; Hou, J.C. Localization for anisotropic sensor networks. In Proceedings of the INFOCOM 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; Volume 1, pp. 138–149. [Google Scholar]
- Pandey, S.; Varma, S. A range based localization system in multihop wireless sensor networks: A distributed cooperative approach. Wirel. Pers. Commun. 2016, 86, 615–634. [Google Scholar] [CrossRef]
- Fascista, A.; Coluccia, A.; Ricci, R. A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments. Signal Process. 2021, 181, 107907. [Google Scholar] [CrossRef]
- Sathyan, T.; Humphrey, D.; Hedley, M. WASP: A system and algorithms for accurate radio localization using low-cost hardware. IEEE Trans. Syst. Man Cybernet. Part C 2010, 2, 211–222. [Google Scholar] [CrossRef]
- Faudoa, I.; Cota, J.; Madrazo, B.; Gonzalez, R.; Diaz, J. A distributed localization algorithm for wireless sensor networks based on robust statistic. IEEE Lat. Am. Trans. 2018, 16, 2977–2986. [Google Scholar] [CrossRef]
- Tomic, S.; Mezei, I. Improved DV-Hop localization algorithm for wireless sensor networks. In Proceedings of the 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 20–22 September 2012; pp. 389–394. [Google Scholar]
- He, C.; Feng, Z.; Ren, Z. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range. Sensors 2018, 18, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, J. Sum of squares method for sensor network localization. Comput. Optim. Appl. 2009, 43, 151–179. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Dinis, R.; Raspopovic, M. Distributed RSS-based localization in wireless sensor networks using convex relaxation. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2014; pp. 853–857. [Google Scholar]
- Hendrickson, B. The molecule problem: Exploiting structure in global optimization. SIAM J. Optim. 1995, 5, 835–857. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S. Mobile Radio Propagation: Large-Scale Path Loss. In Wireless Communications: Principles and Practice; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Amundson, I.; Sallai, J.; Koutsoukos, X.; Ledeczi, A.; Maroti, M. RF angle of arrival-based node localisation. Int. J. Sensor Netw. 2011, 9, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Achroufene, A.; Amirat, Y.; Chibani, A. RSS-based indoor localization using belief function theory. IEEE Trans. Automat. Sci. Eng. 2018, 16, 1163–1180. [Google Scholar] [CrossRef]
- Jamalabdollahi, M.; Zekavat, S. Time of arrival estimation in wireless sensor networks via OFDMA. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar]
- Yu, K.; Guo, Y.J. Robust localization in multihop wireless sensor networks. In Proceedings of the VTC Spring IEEE Vehicular Technology Conference, Marina Bay, Singapore, 11–14 May 2008; pp. 2819–2823. [Google Scholar]
- Liu, R.; Wang, D.; Yin, J.; Wu, Y. Constrained total least squares localization using angle of arrival and time difference of arrival measurements in the presence of synchronization clock bias and sensor position errors. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719858591. [Google Scholar] [CrossRef] [Green Version]
- Asl, A.; Overton, M.L. Analysis of the gradient method with an Armijo–Wolfe line search on a class of non-smooth convex functions. Optim. Methods Softw. 2020, 35, 223–242. [Google Scholar] [CrossRef]
- Blum, M.; Floyd, R.W.; Pratt, V.R.; Rivest, R.L.; Tarjan, R.E. Time bounds for selection. J. Comput. Syst. Sci. 1973, 4, 448–461. [Google Scholar] [CrossRef] [Green Version]
- Srirangarajan, S.; Tewfik, A.H.; Luo, Z.-Q. Distributed sensor network localization using SOCP relaxation. IEEE Trans. Wirel.Commun. 2008, 7, 4886–4895. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Yan, X.; Zhao, W.; Qian, C. A large-scale multi-hop localization algorithm based on regularized extreme learning for wireless networks. Sensors 2017, 17, 2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cota-Ruiz, J.; Rosiles, J.-G.; Sifuentes, E.; Rivas-Perea, P. A low-complexity geometric bilateration method for localization in wireless sensor networks and its comparison with least-squares methods. Sensors 2012, 12, 839–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomic, S.; Marko, B.; Dinis, R. Distributed RSS-Based Localization in Wireless Sensor Networks Based on Second-Order Cone Programming. Sensors 2014, 14, 18410–18432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cota-Ruiz, J.; Gonzalez-Landaeta, R.; Diaz-Roman, J.D.; Mederos-Madrazo, B.; Sifuentes, E. A weighted and distributed algorithm for multi-hop localization. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719860412. [Google Scholar] [CrossRef]
Parameters | Description\Values |
---|---|
Standard-deviation of the distance error (nfe) | 0.1, 0.3 |
Outlier levels () | , , , , , |
Radio Range | 35 m, 45 m |
Number of Networks | 10 |
Network Topologies | isotropic: square-shape |
anisotropic: circular-shape | |
Sensor Nodes Distribution | uniformly random distributed |
Anchor Nodes | 5 |
Unknown Sensors | 95 |
Deployment Area | 200 × 200 m |
Performance Metrics | RMSE, Iterations |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 42.15 | 15.63 |
RELM+LM | 33.98 | 8.7 |
DV-HOP+DWDSCL | 23.36 | 12.81 |
DV-HOP+LM | 30.70 | 9.01 |
DV-HOP+RWNM | 24.04 | 4.25 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 42.25 | 16.01 |
RELM+LM | 36.33 | 9.1 |
DV-HOP+DWDSCL | 24.04 | 9.7 |
DV-HOP+LM | 33.17 | 10.16 |
DV-HOP+RWNM | 24.84 | 4.06 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 42.57 | 14.66 |
RELM+LM | 35.05 | 10.53 |
DV-HOP+DWDSCL | 14.80 | 10.98 |
DV-HOP+LM | 27.31 | 9.75 |
DV-HOP+RWNM | 14.78 | 5.05 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 42.86 | 14.33 |
RELM+LM | 39.03 | 10.01 |
DV-HOP+DWDSCL | 16.13 | 12.93 |
DV-HOP+LM | 32.12 | 10.33 |
DV-HOP+RWNM | 15.22 | 5.45 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 37.89 | 15.35 |
RELM+LM | 28.33 | 10.06 |
DV-HOP+DWDSCL | 19.26 | 11 |
DV-HOP+LM | 23.65 | 8.08 |
DV-HOP+RWNM | 16.49 | 4.15 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 38.23 | 15.53 |
RELM+LM | 30.34 | 10.1 |
DV-HOP+DWDSCL | 19.62 | 11.83 |
DV-HOP+LM | 25.73 | 8.08 |
DV-HOP+RWNM | 16.76 | 4.48 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 45.41 | 13.75 |
RELM+LM | 31.87 | 11.03 |
DV-HOP+DWDSCL | 19.37 | 10.56 |
DV-HOP+LM | 26.85 | 9.40 |
DV-HOP+RWNM | 16.24 | 5.33 |
Algorithms | (m) | |
---|---|---|
RELM+SOCP | 46.22 | 14.01 |
RELM+LM | 34.68 | 11.30 |
DV-HOP+DWDSCL | 19.90 | 13.53 |
DV-HOP+LM | 29.65 | 9.96 |
DV-HOP+RWNM | 16.75 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Roman, J.; Mederos, B.; Sifuentes, E.; Gonzalez-Landaeta, R.; Cota-Ruiz, J. A Weighted and Distributed Algorithm for Range-Based Multi-Hop Localization Using a Newton Method. Sensors 2021, 21, 2324. https://doi.org/10.3390/s21072324
Diaz-Roman J, Mederos B, Sifuentes E, Gonzalez-Landaeta R, Cota-Ruiz J. A Weighted and Distributed Algorithm for Range-Based Multi-Hop Localization Using a Newton Method. Sensors. 2021; 21(7):2324. https://doi.org/10.3390/s21072324
Chicago/Turabian StyleDiaz-Roman, Jose, Boris Mederos, Ernesto Sifuentes, Rafael Gonzalez-Landaeta, and Juan Cota-Ruiz. 2021. "A Weighted and Distributed Algorithm for Range-Based Multi-Hop Localization Using a Newton Method" Sensors 21, no. 7: 2324. https://doi.org/10.3390/s21072324