Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates
<p>Process for fabricating flexible thin-film PZT bar resonator-type transducers on a few micron thick polyimide substrate.</p> "> Figure 2
<p>PZT transducer elements, arranged in 1-D arrays, as well as independently accessed by top and bottom Pt and Au electrodes, are fabricated on a 100 mm Si wafer prior to release. A close-up of an individual element is shown in the inset.</p> "> Figure 3
<p>1-D array of 32 single element PZT thin-film transducers on a 5 µm polyimide layer. A flexible cable connects the transducer elements to a printed circuit board. Anisotropic conductive film (ACF) bonding was used to join the cable and the flexible sample while the cable was inserted to a zero insertion force (ZIF) connector.</p> "> Figure 4
<p>Pitch–catch testing of two neighboring 100 µm × 1000 µm single elements transmitting and receiving an acoustic signal reflected from a metal reflector at a 1.5 cm distance. The transmitting element was driven by a 5 V<sub>p</sub> 5-cycle unipolar excitation and the receiving element detected a 0.2 mV signal.</p> "> Figure 5
<p><b>(a)</b> Hydrophone characterization of a 100 µm × 1000 µm single element driven with a 5 V unipolar sinusoidal excitation at 9.5 MHz. The detected 1.6 mV corresponds to a 33 kPa sound pressure output; (<b>b</b>) Hydrophone detection of a single cycle excitation along with FFT calculation, which shows a −6 dB bandwidth of ~32%.</p> ">
Abstract
:1. Introduction
2. Device Fabrication
3. Acoustic Testing
3.1. Pitch–Catch
3.2. Hydrophone Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandian, N.G.; Weintraub, A.; Schwartz, S.L.; Kumar, R.; Kusay, B.S.; Katz, S.E.; Aronovitz, M.; Udelson, J.; Konstam, M.A.; Salem, D.N.; et al. Intravascular and Intracardiac ultrasound imaging: Current research and future directions. Echocardiography 1990, 7, 287–377. [Google Scholar] [CrossRef] [PubMed]
- Degertekin, F.L.; Guldiken, R.O.; Karaman, M. Annular-ring CMUT arrays for forward-looking IVUS: Transducer characterization and imaging. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2006, 53, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Lin, D.S.; Oralkan, O. Fabrication of flexible transducer arrays with through-wafer electrical interconnects based on trench refilling with PDMS. J. Microelectromechanical Syst. 2008, 17, 446–452. [Google Scholar] [CrossRef]
- Schulze-Clewing, J.; Eberle, M.J.; Stephens, D.N. Miniaturized circular array. In Proceedings of the IEEE International Ultrasonics Symposium, Montreal, Canada, 23–27 August 2004; pp. 384–390. [Google Scholar]
- Black, W.C.; Stephens, D.N. CMOS chip for invasive ultrasound imaging. IEEE J. Solid-State Circuits 1994, 29, 1381–1387. [Google Scholar] [CrossRef]
- Pashaei, V.; Dehghanzadeh, P.; Enwia, G.; Bayat, M.; Majerus, S.J.A.; Mandal, S. Flexible body-conformal ultrasound patches for image-guided neuromodulation. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, J. Finger vein authentication technology and its future. In Proceedings of the IEEE Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, HI, USA, 15–17 June 2006; pp. 5–8. [Google Scholar]
- Kono, M.; Ueki, H.; Uemura, S. Near-infrared finger vein patterns for personal identification. Appl. Optics 2002, 41, 7429–7436. [Google Scholar] [CrossRef]
- Kato, Y.; Sekitani, T.; Noguchi, Y.; Yokota, T.; Takamiya, M.; Sakurai, T.; Someya, T. Large-area flexible ultrasonic imaging system with an organic transistor active matrix. IEEE Trans. Electron. Devices 2010, 57, 995–1002. [Google Scholar] [CrossRef]
- Brown, L.F.; Mason, J.L. Disposable PVDF ultrasonic transducers for non-destructive testing applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1996, 43, 560–568. [Google Scholar] [CrossRef]
- Ambrosy, A.; Holdik, K. Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E Sci. Instrum. 1984, 17, 856–859. [Google Scholar] [CrossRef]
- Sherar, M.D.; Foster, F.S. The design and fabrication of high frequency poly(vinylidene fluoride) transducers. Ultrason. Imaging 1989, 11, 75–94. [Google Scholar] [CrossRef]
- Marin-Franch, P.; Pettigrew, I.; Parker, M.; Kirk, K.J.; Cochran, S. Piezocrystal-polymer composites: New materials for transducers for ultrasonic NDT. Insight-Non-Destr. Test. Cond. Monit. 2004, 46, 653–657. [Google Scholar] [CrossRef]
- Akhnak, M.; Martinez, O.; Ullate, L.G.; Montero de Espinosa, F. 64 Elements two-dimensional piezoelectric array for 3D imaging. Ultrasonics 2002, 40, 139–143. [Google Scholar] [CrossRef]
- Losego, M.D.; Jimison, L.H.; Ihlefeld, J.F.; Maria, J.-P. Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates. Appl. Phys. Lett. 2005, 86, 172906. [Google Scholar] [CrossRef]
- Yeo, H.; Trolier-McKinstry, S. {001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils. J. Appl. Phys. 2014, 116, 014105. [Google Scholar] [CrossRef] [Green Version]
- Kingon, A.; Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 2005, 4, 233–237. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, W.; Li, N.; Cross, L.E. Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48)O3 thin films on a PbTiO3-coated stainless steel substrate. Appl. Phys. Lett. 2003, 81, 4805–4807. [Google Scholar] [CrossRef]
- Suzuki, T.; Kanno, I.; Loverich, J.; Kotera, H.; Wasa, K. Characterization of Pb (Zr, Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications. Sens. Actuators A Phys. 2006, 125, 382–386. [Google Scholar] [CrossRef]
- Liu, T.; Wallace, M.; Trolier-McKinstry, S.; Jackson, T.N. High-temperature crystallized thin-film PZT on thin polyimide substrates. J. Appl. Phys. 2017, 122, 164103. [Google Scholar] [CrossRef] [Green Version]
- Kushida-Abdelghafar, K.; Miki, H.; Torii, K.; Fujisaki, Y. Electrode-induced degradation of Pb(Zr x,Ti1− x)O3 (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors. Appl. Phys. Lett. 1996, 69, 3188–3190. [Google Scholar] [CrossRef]
- Maniar, P.D.; Moazzami, R.; Jones, R.E.; Campbell, A.C.; Mogab, C.J. Impact of backend processing on integrated ferroelectric capacitor characteristics. Mater. Res. Soc. Symp. Proc. 1993, 310, 151–156. [Google Scholar] [CrossRef]
- Koo, J.-M.; Kim, T.; Kim, J. Hydrogen induced degradation phenomena of PZT ferroelectric capacitors. In Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, Honolulu, HI, USA, 21 July–2 August 2000; Volume 2, pp. 591–594. [Google Scholar]
- Miki, H.; Abdelghafar, K.K.; Torii, k.; Fujisaki, Y. Hydrogen-related degradation and recovery phenomena in Pb(Zr, Ti)O3 capacitors with a platinum electrode. Jpn. J. Appl. Phys. 1997, 36, 1132–1135. [Google Scholar] [CrossRef]
- Chang, S.-M.; Jou, J.-H.; Hsieh, A.; Chen, T.-H.; Chang, C.-Y.; Wang, Y.-H.; Huang, C.-M. Characteristic study of anisotropic-conductive film for chip-on-film packaging. Microelectron. Reliab. 2001, 41, 2001–2009. [Google Scholar] [CrossRef]
- Takano, N.; Fujinawa, T.; Kato, T. Film technologies for semiconductor & electronic components. Hitachi Chem. Tech. Rep. 2013, 55, 20–23. [Google Scholar]
- Shiiki, M.; Imaizumi, J.; Miyata, T.; Chinda, A. Materials and components for flat panel display applications. Hitachi Rev. 2006, 55, 32–39. [Google Scholar]
- Uchino, K. Piezoelectric devices. In Ferroelectric Devices; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 161–232. [Google Scholar]
- Ogawa, T. Acoustic wave velocity measurement on piezoelectric ceramics. In Piezoelectric Materials and Devices-Practice and Application; Ebrahimi, F., Ed.; Intech Open Access Publisher: Rijeka, Croatia, 2013; pp. 35–52. [Google Scholar]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of vibration. In Fundamentals of Acoustics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1982; pp. 2–4. [Google Scholar]
- Liu, Z.; Yoshida, S.; Horie, T.; Okamoto, S.; Takayama, R.; Tanaka, S. Characterization of epitaxial-PZT/Si piezoelectric micromachined ultrasonic transducer (pMUT) and its phased array system. In Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 23–27 June 2019; pp. 246–249. [Google Scholar]
- Cheng, C.Y.; Dangi, A.; Ren, L.; Tiwari, S.; Benoit, R.R.; Qiu, Y.; Lay, H.S.; Agrawal, S.; Pratap, R.; Kothapalli, S.-R.; et al. Thin film PZT-based PMUT arrays for deterministic particle manipulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 2019, 66, 1606–1615. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, H.-Y.; Lu, Y.; Ng, E.J.; Tsai, J.M.; Boser, B.E.; Horsley, D.A. Ultrasonic fingerprint sensor with transmit beamforming based on a PMUT array bonded to CMOS circuitry. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2017, 64, 1401–1408. [Google Scholar] [CrossRef]
Structure | Frequency | Pressure Output | Pressure Output/1000 µm2 | Distance | Driving Voltage | Source |
---|---|---|---|---|---|---|
Flexible PZT bar resonator | 9.5 MHz | 33 kPa | 0.33 kPa | 6 mm | 5 V | This work |
Epitaxial PZT pMUT | 8.5 MHz | 6.3 kPa | 2.65 kPa | max output | 5 V | [31] |
PZT pMUT | 8 MHz | 9.5 kPa | 0.16 kPa | 7.5 mm | 5 V | [32] |
AlN pMUT | 20 MHz | 25 kPa | 0.12 kPa | 0.8 mm | 24 V | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Dangi, A.; Kim, J.N.; Kothapalli, S.-R.; Choi, K.; Trolier-McKinstry, S.; Jackson, T. Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates. Sensors 2021, 21, 1014. https://doi.org/10.3390/s21031014
Liu T, Dangi A, Kim JN, Kothapalli S-R, Choi K, Trolier-McKinstry S, Jackson T. Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates. Sensors. 2021; 21(3):1014. https://doi.org/10.3390/s21031014
Chicago/Turabian StyleLiu, Tianning, Ajay Dangi, Jeong Nyeon Kim, Sri-Rajasekhar Kothapalli, Kyusun Choi, Susan Trolier-McKinstry, and Thomas Jackson. 2021. "Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates" Sensors 21, no. 3: 1014. https://doi.org/10.3390/s21031014
APA StyleLiu, T., Dangi, A., Kim, J. N., Kothapalli, S.-R., Choi, K., Trolier-McKinstry, S., & Jackson, T. (2021). Flexible Thin-Film PZT Ultrasonic Transducers on Polyimide Substrates. Sensors, 21(3), 1014. https://doi.org/10.3390/s21031014