Significant Wave Height Estimation from Joint CYGNSS DDMA and LES Observations
<p>Ground track map for one CYGNSS satellite (<b>a</b>) and all CYGNSS satellites (<b>b</b>) on 6 June 2018.</p> "> Figure 2
<p>Distribution of ERA5 data on 6 June 2018 (<b>a</b>), AVISO data on 6 June 2018 (<b>b</b>), and selected NDBC buoy sites (<b>c</b>).</p> "> Figure 3
<p>Distribution of correlation coefficients and maximal information coefficients between DDMA/LES and SWH.</p> "> Figure 4
<p>Flowchart diagram of the three inversion methods.</p> "> Figure 5
<p>The bias of different order functions with three inversion methods.</p> "> Figure 6
<p><span class="html-italic">R</span> and RMSE values of different order functions from three inversion methods.</p> "> Figure 7
<p>Bias, R, and RMSE value of different functions of three inversion methods.</p> "> Figure 8
<p>The difference between the CYGNSS estimated SWH and ERA-Interim (DOY 157, 2018).</p> "> Figure 9
<p>The difference between the CYGNSS inversion result of SWH and AVISO (DOY 157, 2018).</p> "> Figure 10
<p>The difference between the CYGNSS inversion result of SWH and Buoy (DOY 157, 2018).</p> "> Figure 11
<p>Distribution of MAE with the latitude for different data.</p> "> Figure 12
<p>(<b>a</b>) Normalized distribution of DDMA data volumes; (<b>b</b>) normalized distribution of LES data volumes; and (<b>c</b>) SNR distribution of CYGNSS reflection points (DOY 215, 2019).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. CYGNSS Data
- (1)
- Some invalid data were eliminated through the quality control flags for CYGNSS data;
- (2)
- Data with specular reflection points more than 25 km far away from the land were selected to reduce the modeling error;
- (3)
- Observation data range was defined as 38° N–38° S in the latitude and 0–360° in the longitude.
2.2. Model Data
2.3. SWH Estimation
2.4. Data Comparison Method
3. Results and Evaluation
3.1. SWH from CYGNSS
3.2. Comparing with ERA-Interim SWH Data
3.3. Comparison with AVISO SWH Data
3.4. Comparison with Buoy Data
4. Error Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shanas, P.R.; Kumar, V.S.; Hithin, N.K. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data. Ocean Eng. 2014, 83, 24–35. [Google Scholar] [CrossRef]
- Xue, S.; Geng, X.; Yan, X.-H.; Xie, T.; Yu, Q. Significant wave height retrieval from Sentinel-1 SAR imagery by convolutional neural network. J. Oceanogr. 2020, 76, 465–477. [Google Scholar] [CrossRef]
- Kumar, S.P.; Snaith, H.; Challenor, P.; Guymer, H.T. Seasonal and inter-annual sea surface height variations of the northern Indian Ocean from the TOPEX/POSEIDON altimeter. Indian J. Mar. Sci. 1998, 27, 10–16. [Google Scholar]
- Birol, F.; Roblou, L.; Lyard, F.; Llovel, W.; Ménard, Y. Towards Using Satellite Altimetry for the Observation of Coastal Dynamics. ESASP 2006, 614, 23. [Google Scholar]
- Xu, X.-Y.; Xu, K.; Shen, H.; Liu, Y.-L.; Liu, H.-G. Sea Surface Height and Significant Wave Height Calibration Methodology by a GNSS Buoy Campaign for HY-2A Altimeter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5252–5261. [Google Scholar] [CrossRef]
- Bo, W.; Min, L.; Liu, S.; Chen, S.; Zhu, Q.; Wang, H. Current status and trend of ocean data buoy observation technology applications. Chin. J. Sci. Instrum. 2014, 35, 2401–2414. [Google Scholar]
- Martin-Neira, M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Nasser, N.; Jin, S. Physical Reflectivity and Polarization Characteristics for Snow and Ice-Covered Surfaces Interacting with GPS Signals. Remote Sens. 2013, 5, 4006–4030. [Google Scholar]
- Li, W.Q.; Cardellach, E.; Fabra, F.; Ribo, S.; Rius, A. Assessment of Spaceborne GNSS-R Ocean Altimetry Performance Using CYGNSS Mission Raw Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 238–250. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Vall-llossera, M.; Valencia, E.; Marchan-Hernandez, J.F.; Ramos-Perez, I. Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3616–3624. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Aguasca, A.; Valencia, E.; Bosch-Lluis, X.; Ramos-Perez, I.; Park, H.; Camps, A.; Vall-llossera, M. Snow monitoring using GNSS-R techniques. In Proceedings of the International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 4375–4378. [Google Scholar]
- Wu, X.; Jin, S. GNSS-Reflectometry: Forest canopies polarization scattering properties and modeling. Adv. Space Res. 2014, 54, 863–870. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, S. Evaluation of Spaceborne GNSS-R Retrieved Ocean Surface Wind Speed with Multiple Datasets. Remote Sens. 2019, 11, 2747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.D.; Yang, D.K.; Yu, Y.Q.; Wang, F. Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 649–658. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Yin, C.; Cao, Y.C.; Zhu, B.; Ming-Li, L.I.; Hong-Jia, W.U.; Wei-Hua, L. Application of significant wave height measurement using GNSS-R signals. J. Trop. Oceanogr. 2012, 31, 36–40. [Google Scholar]
- Soulat, F.; Caparrini, M.; Germain, O.; Lopez-Dekker, P.; Taani, M.; Ruffini, G. Sea state monitoring using coastal GNSS-R. Geophys. Res. Lett. 2004, 31, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arroyo, A.; Camps, A.; Park, H.; Pascual, D.; Onrubia, R.; Martin, F. Retrieval of Significant Wave Height and Mean Sea Surface Level Using the GNSS-R Interference Pattern Technique: Results From a Three-Month Field Campaign. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3198–3209. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yang, D.K.; Li, W.Q.; Zhang, Y.Z. A New Retrieval Method of Significant Wave Height Based on Statistics of Scattered BeiDou GEO Signals. In Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA, 14–18 September 2015; pp. 3953–3957. [Google Scholar]
- Xu, F.; Sun, X.; Liu, X.; Li, R. The Study on Retrieval Technique of Significant Wave Height Using Airborne GNSS-R. In Proceedings of the 28th Conference of Spacecraft TT&C Technology in China, Singapore, 1 November 2018; pp. 401–411. [Google Scholar]
- Ling, J.; Zhang, F.; Yang, D.; Feng, W. Research on Inversion Method of Significant Wave Height Using GNSS-R. J. Telem. Track. Command. 2016, 37, 29–34. [Google Scholar]
- Clarizia, M.P.; Gommenginger, C.P.; Gleason, S.T.; Srokosz, M.A.; Galdi, C.; Di Bisceglie, M. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean. Geophys. Res. Lett. 2009, 36, L02608. [Google Scholar] [CrossRef] [Green Version]
- Di Simone, A.; Park, H.; Riccio, D.; Camps, A. Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4237–4255. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Peng, Q.; Jin, S. Significant Wave Height Estimation from Space-Borne Cyclone-GNSS Reflectometry. Remote Sens. 2019, 11, 584. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, M.P.; Ruf, C.S.; Jales, P.; Gommenginger, C. Spaceborne GNSS-R Minimum Variance Wind Speed Estimator. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6829–6843. [Google Scholar] [CrossRef]
- Hans, H.; de Patricia, R.; Bill, B.; Dinand, S.; Adrian, S.; Cornel, S.; Saleh, A.; Magdalena, A.-B.; Gianpaolo, B.; Peter, B.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP; ERA Report Series; ECMWF: Reading, UK, 2018; Volume 27. [Google Scholar]
- Diallo, M.; Ern, M.; Ploeger, F. The advective Brewer–Dobson circulation in the ERA5 reanalysis: Climatology, variability, and trends. Atmos. Chem. Phys. 2021, 21, 7515–7544. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Zhao, Y.P.; Shu, Y.; Yuan, H.N.; Geng, J.; Wang, S.P. Fast search local extremum for maximal information coefficient (MIC). J. Comput. Appl. Math. 2018, 327, 372–387. [Google Scholar] [CrossRef]
- Morelli, M.S.; Greco, A.; Valenza, G.; Giannoni, A.; Emdin, M.; Scilingo, E.P.; Vanello, N. Analysis of generic coupling between EEG activity and PETCO2 in free breathing and breath-hold tasks using Maximal Information Coefficient (MIC). Sci. Rep. 2018, 8, 4492. [Google Scholar] [CrossRef] [PubMed]
DOY | 23 | 39 | 70 | 111 | 143 | 157 | 185 | 226 | 247 | 287 | 306 | 342 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (m) | 0.246 | 0.227 | 0.246 | 0.233 | 0.329 | 0.247 | 0.304 | 0.257 | 0.267 | 0.245 | 0.242 | 0.240 |
Bias (m) | −0.016 | −0.014 | 0.007 | −0.040 | 0.009 | −0.024 | 0.005 | −0.014 | −0.023 | −0.005 | 0.023 | −0.006 |
R | 0.938 | 0.937 | 0.946 | 0.950 | 0.927 | 0.956 | 0.954 | 0.957 | 0.956 | 0.943 | 0.926 | 0.952 |
DOY | 23 | 39 | 70 | 111 | 143 | 157 | 185 | 226 | 247 | 287 | 306 | 342 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (m) | 0.391 | 0.400 | 0.438 | 0.425 | 0.488 | 0.386 | 0.489 | 0.457 | 0.427 | 0.412 | 0.331 | 0.429 |
Bias (m) | 0.024 | −0.035 | −0.030 | −0.025 | 0.037 | −0.003 | 0.064 | 0.069 | 0.005 | −0.025 | 0.011 | 0.004 |
R | 0.844 | 0.808 | 0.845 | 0.817 | 0.842 | 0.889 | 0.858 | 0.863 | 0.863 | 0.836 | 0.864 | 0.858 |
DOY | 23 | 39 | 70 | 111 | 143 | 157 | 185 | 226 | 247 | 287 | 306 | 342 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (m) | 0.331 | 0.281 | 0.310 | 0.184 | 0.308 | 0.196 | 0.197 | 0.164 | 0.238 | 0.206 | 0.219 | 0.328 |
Bias (m) | 0.042 | 0.077 | 0.136 | 0.004 | 0.159 | 0.064 | 0.035 | 0.072 | 0.074 | 0.133 | 0.061 | 0.032 |
R | 0.932 | 0.915 | 0.873 | 0.945 | 0.855 | 0.966 | 0.943 | 0.958 | 0.810 | 0.910 | 0.894 | 0.883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Jin, S.; Jia, Y.; Ye, M. Significant Wave Height Estimation from Joint CYGNSS DDMA and LES Observations. Sensors 2021, 21, 6123. https://doi.org/10.3390/s21186123
Yang S, Jin S, Jia Y, Ye M. Significant Wave Height Estimation from Joint CYGNSS DDMA and LES Observations. Sensors. 2021; 21(18):6123. https://doi.org/10.3390/s21186123
Chicago/Turabian StyleYang, Shuai, Shuanggen Jin, Yan Jia, and Mingda Ye. 2021. "Significant Wave Height Estimation from Joint CYGNSS DDMA and LES Observations" Sensors 21, no. 18: 6123. https://doi.org/10.3390/s21186123