Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System
<p>Fingerprint positioning with a deep learning classifier from [<a href="#B15-sensors-21-04349" class="html-bibr">15</a>].</p> "> Figure 2
<p>Environment setup for a floor map with 74 reference points.</p> "> Figure 3
<p>The proposed fingerprint-based Wi-Fi positioning system.</p> "> Figure 4
<p>Input comma-separated-value (CSV) file format [<a href="#B14-sensors-21-04349" class="html-bibr">14</a>].</p> "> Figure 5
<p>The convolutional neural network (CNN) architecture used in this study [<a href="#B14-sensors-21-04349" class="html-bibr">14</a>]. The second layer had a total of 18,496 parameters and the FC layer had 3072 counters, which led to the next hidden FC layer with 1024 converters. Finally, a softmax layer with 74 routines was used.</p> "> Figure 6
<p>Deep learning input file conversion from a CSV file to an image. (<b>a</b>) Input CSV readings of the nine visible RSSIs from a total of 256 APs. (<b>b</b>) Converted grayscale image with nine bright spots representing APs visible at the RP [<a href="#B14-sensors-21-04349" class="html-bibr">14</a>].</p> "> Figure 7
<p>The concept of core points, border points, and noise points.</p> "> Figure 8
<p>Clustering-based noise elimination scheme (CNES)-based training dataset with the highlighted and deleted noise points.</p> "> Figure 9
<p>The effect of CNES corresponding to eps = 70 and MinPts = 4 on total number of RSSI samples at each RP.</p> "> Figure 10
<p>Flow graph for clustering-based noise elimination and position estimation.</p> "> Figure 11
<p>K-nearest neighbor distances to determine eps MinPts for CNES. The red circle represents “elbow”, which means there exist good eps values.</p> "> Figure 12
<p>The effect of CNES on the number of RSSI samples at each RP corresponding to different eps values.</p> "> Figure 13
<p>Cumulative distribution function (cdf) vs. distance error. <span class="html-italic">X</span>-axis represents positioning errors and <span class="html-italic">Y</span>-axis represents the positioning accuracy for different positioning errors.</p> "> Figure 14
<p>Principal component analysis (PCA) plots for two schemes: (<b>a</b>) before and (<b>b</b>) after applying the CNES. Green points are test data, and blue points are training data.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Environment Setup
2.2. CNN Model and Data Augmentation
2.3. RSSI Dataset Generation
3. Proposed Scheme
3.1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
3.2. Proposed Clustering-Based Noise Elimination Scheme (CNES)
Algorithm 1: Pseudocode for Clustering-Based Noise Elimination and Position Estimation |
1. Input: Original CSV fingerprint training dataset 2. Define: CSV dataset: 3. for density calculation 4. Define eps; minpts; 5. for each reference point calculate density ‘D’ 6. if RP == core point; \\ Keep the RP data; 7. elseif RP == edge point; \\ Keep the RP data; 8. else RP ≠ core point || RP ≠ edge point; \\ Delete the RP data; 9. end if 10. end for 11. end for 12. Generate new CSV with density-based noise elimination point; 13. Augment the output CSV file; 14. Train the CNN classifier with new CSV file; 15. Test the file for real time online position estimation; 16. end for |
4. Numerical Results
4.1. Analysis of Eps
4.2. Lab Simulation Results
4.3. PCA
4.4. Experimental Results with Real Time Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashraf, I.; Hur, S.; Park, Y. Indoor positioning on disparate commercial smartphones using Wi-Fi access points coverage area. Sensors 2019, 19, 4351. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Sato, K.; Yamashita, A.; Matsubayashi, K. Indoor positioning and obstacle detection for visually impaired navigation system based on LSD-SLAM. In Proceedings of the 2017 International Conference on Biometrics and Kansei Engineering (ICBAKE), Kyoto, Japan, 15–17 September 2017. [Google Scholar]
- Qi, J.; Liu, G.P. A robust high-accuracy ultrasound indoor positioning system based on a wireless sensor network. Sensors 2017, 17, 2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalajmehrabadi, A.; Gatsis, N.; Pack, D.J.; Akopian, D. A joint indoor WLAN localization and outlier detection scheme using LASSO and elastic-net optimization techniques. IEEE Trans. Mob. Comput. 2016, 16, 2079–2092. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Hur, S.; Park, S.; Park, Y. Harvesting indoor positioning accuracy by exploring multiple features from received signal strength vector. IEEE Access 2019, 7, 52110–52121. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Park, Y. Smartphone Sensor Based Indoor Positioning: Current Status, Opportunities, and Future Challenges. Electronics 2020, 9, 891. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Wang, Y. An indoor passive positioning method using CSI fingerprint based on Adaboost. IEEE Sens. J. 2019, 19, 5792–5800. [Google Scholar] [CrossRef]
- Song, Q.W.; Guo, S.T.; Liu, X.; Yang, Y.Y. CSI amplitude fingerprinting based NB-IoT indoor localization. IEEE Internet Things J. 2017, 5, 1494–1504. [Google Scholar] [CrossRef]
- Wu, Z.; Rengin, C.; Shuyan, X.; Xiaosi, W.; Yuli, F. Research and improvement of WiFi positioning based on k nearest neighbor method. Comput. Eng. 2017, 43, 289–293. [Google Scholar]
- Li, C.; Qiu, Z.; Liu, C. An improved weighted k-nearest neighbor algorithm for indoor positioning. Wirel. Pers. Commun. 2017, 96, 2239–2251. [Google Scholar] [CrossRef]
- Chishti, S.O.; Riaz, S.; Zaib, M.B.; Nauman, M. Self-Driving Cars Using CNN and Q-Learning. In Proceedings of the 2018 IEEE 21st International Multi-Topic Conference (INMIC), Karachi, Pakistan, 1–2 December 2018; pp. 1–7. [Google Scholar]
- Song, X.; Fan, X.; Xiang, C.; Ye, Q.; Liu, L.; Wang, Z.; He, X.; Yang, N.; Fang, G. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 2019, 7, 110698–110709. [Google Scholar] [CrossRef]
- Hao, Z.; Yan, Y.; Dang, X.; Shao, C. Endpoints-clipping CSI amplitude for SVM-based indoor localization. Sensors 2019, 17, 3689. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.S.; Hwang, S.H. Comparison of CNN applications for RSSI-based fingerprint indoor localization. Electronics 2019, 8, 989. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.S.; Lee, S.M.; Rim, M.; Hwang, S.H. Data augmentation schemes for deep learning in an indoor positioning application. Electronics 2019, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Wei, Y.; Liu, S.; Hwang, S.H. Pre-and post-processing algorithms with deep learning classifier for Wi-Fi fingerprint-based indoor positioning. Electronics 2019, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, H.; Zhang, J. Self-Adapting Multi-Fingerprints Joint Indoor Positioning Algorithm in WLAN Based on Database of AP ID. In Proceedings of the IEEE 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 534–538. [Google Scholar]
- Liu, K.; Wang, Y.; Lin, L.; Chen, G. An analysis of impact factors for positioning performance in WLAN fingerprinting systems using Ishikawa diagrams and a simulation platform. Mob. Inf. Syst. 2017, 2017, 8294248. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Liu, Y.; Yuan, G.; Wang, Z. Indoor fingerprint positioning based on Wi-Fi: An overview. ISPRS Int. J. Geo Inf. 2017, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Xiong, Q.; Wang, K.; Lu, W.; Liu, T. Accurate WiFi-based indoor localization by using fuzzy classifier and mlps ensemble in complex environment. J. Frankl. Inst. 2020, 357, 1420–1436. [Google Scholar] [CrossRef]
- Sinha, R.S.; Hwang, S.-H. Improved RSSI-based data augmentation technique for fingerprint indoor localisation. Electronics 2020, 9, 851. [Google Scholar] [CrossRef]
- Park, C.R.; Rhee, S.H. Indoor positioning using Wi-Fi fingerprint with signal clustering. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 18–20 October 2017; pp. 820–822. [Google Scholar]
- Hantoush, R. Evaluating Wi-Fi Indoor Positioning Approaches in a Real-World Environment. Ph.D. Thesis, Universidade NOVA de Lisboa, Lisbon, Portugal, 2016. [Google Scholar]
- Li, A.; Fu, J.; Shen, H.; Sun, S. A cluster principal component analysis based indoor positioning algorithm. IEEE Internet Things J. 2020, 8, 187–196. [Google Scholar] [CrossRef]
- Puussaar, A. Indoor Positioning Using WLAN Fingerprinting with Post-Processing Scheme. Ph.D. Thesis, University of Tartu, Tartu, Estonia, 2014. [Google Scholar]
Database Type | Collection | # of Images | |
---|---|---|---|
Before Augmentation | After Augmentation | ||
Training | 24 sets | 8880 | 532,800 |
Test | 4 sets | 1480 | -- |
Dataset | Forward | Backward | Number of Data Files |
---|---|---|---|
Morning | MF1, MF2, ..., MF7 | MB1, MB2, ..., MB7 | 14 |
Afternoon | AF1, AF2, ..., AF7 | AB1, AB2, ..., AB7 | 14 |
Number of Data Files | 14 | 14 | 28 |
Eps Value | Lab Simulation Accuracy | Eps Value | Lab Simulation Accuracy |
---|---|---|---|
60 | 93.594% | 68 | 93.491% |
61 | 93.193% | 69 | 92.889% |
62 | 93.293% | 70 | 94.191% |
63 | 92.789% | 71 | 93.189% |
64 | 93.889% | 72 | 92.893% |
65 | 92.593% | 73 | 92.292% |
66 | 92.490% | 74 | 93.093% |
Lab Simulation Model | Margin (%) | ||
---|---|---|---|
0 | 1 | 2 | |
CNN | 43.50 | 75.95 | 87.26 |
CNES + CNN | 61.28 | 83.19 | 92.01 |
Difference | 17.78 | 7.24 | 4.75 |
Day | Test 1 | Test 2 | Test 3 | Test 4 |
---|---|---|---|---|
D-1 | CNN | CNES + CNN | CNN | CNES + CNN |
D-2 | CNES + CNN | CNN | CNES + CNN | CNN |
RF # | Positioning Decision # | # of Success Decisions | ||||||
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | Margin-0 | Margin-1 | Margin-2 | |
1 | 1 | 1 | 2 | 1 | 1 | 4 | 5 | 5 |
2 | 2 | 3 | 2 | 4 | 2 | 3 | 4 | 5 |
3 | 3 | 3 | 2 | 3 | 4 | 3 | 5 | 5 |
•••••• | ||||||||
72 | 72 | 73 | 73 | 74 | 72 | 2 | 4 | 5 |
73 | 73 | 73 | 73 | 73 | 26 | 4 | 4 | 5 |
74 | 73 | 74 | 74 | 26 | 26 | 2 | 4 | 5 |
Experiment Success Rate (%) | 61.71 | 83.35 | 91.62 |
Day | Database (Test Number) | Margin | Database Test Number) | Margin | ||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 0 | 1 | 2 | |||
D-1 | CNN (Test 1) | 38.97 | 73.78 | 85.13 | CNN (Test 3) | 39.12 | 72.95 | 84.81 |
CNES + CNN (Test 2) | 61.71 | 83.35 | 91.62 | CNES + CNN (Test 4) | 62.28 | 82.47 | 89.69 | |
D-2 | CNES + CNN (Test 1) | 62.03 | 82.73 | 90.11 | CNES + CNN (Test 3) | 61.48 | 82.51 | 90.27 |
CNN (Test 2) | 40.23 | 74.06 | 85.79 | CNN (Test 4) | 39.47 | 73.69 | 85.14 |
Database | Average Margin | ||
---|---|---|---|
0 | 1 | 2 | |
CNN | 39.45 | 73.62 | 85.22 |
CNES + CNN | 61.88 | 82.77 | 90.42 |
Difference | 22.43 | 9.15 | 5.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sinha, R.S.; Hwang, S.-H. Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System. Sensors 2021, 21, 4349. https://doi.org/10.3390/s21134349
Liu S, Sinha RS, Hwang S-H. Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System. Sensors. 2021; 21(13):4349. https://doi.org/10.3390/s21134349
Chicago/Turabian StyleLiu, Shuzhi, Rashmi Sharan Sinha, and Seung-Hoon Hwang. 2021. "Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System" Sensors 21, no. 13: 4349. https://doi.org/10.3390/s21134349
APA StyleLiu, S., Sinha, R. S., & Hwang, S.-H. (2021). Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System. Sensors, 21(13), 4349. https://doi.org/10.3390/s21134349