Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing
<p>Schematic of the interrogation system—refractive index calibration.</p> "> Figure 2
<p>Schematic of the interrogation system—temperature calibration.</p> "> Figure 3
<p>Profilometry of the fabricated stCFBGs, reporting the fiber thickness within the grating region as on x/y directions as a function of the fiber axis z.</p> "> Figure 4
<p>3D mesh of the fabricate taper.</p> "> Figure 5
<p>The reflection spectrum of the stCFBG, for five different RI values ranging from 1.34974 to 1.35845. The left inset shows the 1561–1563-nm bandwidth corresponding to the pre-taper zone, while the right inset shows the 1575–1578-nm bandwidth located after, in the post-taper region, which encodes the RI sensitivity.</p> "> Figure 6
<p>The reflection spectrum of the stCFBG, in water, for temperature values ranging from 30 °C to 80 °C. The left inset shows the response on the left side of the grating spectrum (1559–1561 nm) where we observe the wavelength shift; the right inset shows the response on the 1575–1580 nm bandwidth, where we observe the insensitivity of the reflectivity level to the temperature, as well as the shift of the whole spectral bandwidth towards the longer wavelengths.</p> "> Figure 7
<p>Evaluation of the dual stCFBG sensitivity to RI and temperature. (<b>a</b>) RI response, evaluating ΔI as a function of Δ<span class="html-italic">n</span>; the sensitivity ΔI/Δ<span class="html-italic">n</span> is estimated as 382.83 dB/RIU, with R<sup>2</sup> = 0.9822. (<b>b</b>) Temperature response, evaluating Δλ as a function of ΔT; the sensitivity Δλ/ΔT is estimated as 9.893 pm/°C, with R<sup>2</sup> = 0.9982.</p> "> Figure 8
<p>Evaluation of the cross-sensitivities of the stCFBG sensitivity to RI and temperature. (<b>a</b>) Effect of the RI change on the wavelength shift estimation, evaluated as 568.1 pm/RIU; (<b>b</b>) effect of the temperature change on the intensity level of the post-taper bandwidth, estimated as −1.54 × 10<sup>−3</sup> dB/°C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the stCFBG Fiber Sensor
2.2. Gold Layer Sputtering
2.3. Interrogation and Calibration
3. Results
3.1. Profilometry of the stCFBGs
3.2. Refractive Index Detection
3.3. Temperature Detection
3.4. Sensitivity Analysis and Dual RI/Temperature Sensing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Recent Development in Optical Fiber Biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef] [Green Version]
- Loyez, M.; Larrieu, J.-C.; Chevineau, S.; Remmelink, M.; Leduc, D.; Bondue, B.; Lambert, P.; Devière, J.; Wattiez, R.; Caucheteur, C. In situ cancer diagnosis through online plasmonics. Biosens. Bioelectron. 2019, 131, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taffoni, F.; Formica, D.; Saccomandi, P.; Di Pino, G.; Schena, E. Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview. Sensors 2013, 13, 14105–14120. [Google Scholar] [CrossRef] [PubMed]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Chiavaioli, F. Recent Development of Resonance-Based Optical Sensors and Biosensors. Optics 2020, 1, 255–258. [Google Scholar] [CrossRef]
- Guo, T.; González-Vila, Á.; Loyez, M.; Caucheteur, C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. Sensors 2017, 17, 2732. [Google Scholar] [CrossRef] [Green Version]
- Bekmurzayeva, A.; Dukenbayev, K.; Shaimerdenova, M.; Bekniyazov, I.; Ayupova, T.; Sypabekova, M.; Molardi, C.; Tosi, D. Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors 2018, 18, 4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Jiang, S.Z.; Li, C.H.; Xu, S.C.; Yu, J.; Wang, M.H.; Liu, A.H.; Man, B.Y. U-bent fiber optic SPR sensor based on graphene/AgNPs. Sens. Actuators B Chem. 2017, 251, 127–133. [Google Scholar] [CrossRef]
- Bremer, K.; Roth, B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 2015, 23, 17179–17184. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.-O.; Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Caucheteur, C.; Loyez, M.; González-Vila, Á.; Wattiez, R. Evaluation of gold layer configuration for plasmonic fiber grating biosensors. Opt. Express 2018, 26, 24154–24163. [Google Scholar] [CrossRef] [PubMed]
- Sypabekova, M.; Korganbayev, S.; González-Vila, Á.; Caucheteur, C.; Shaimerdenova, M.; Ayupova, T.; Bekmurzayeva, A.; Vangelista, L.; Tosi, D. Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection. Biosens. Bioelectron. 2019, 146, 111765. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Srivastava, A.; Iadicicco, A.; Campopiano, S. Multi-parameter sensor based on single Long Period Grating in Panda fiber for the simultaneous measurement of SRI, temperature and strain. Opt. Laser Technol. 2019, 113, 198–203. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagic, D. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature. Opt. Express 2014, 22, 16241–16253. [Google Scholar] [CrossRef]
- Ran, Y.; Long, J.; Xu, Z.; Yin, Y.; Hu, D.; Long, X.; Zhang, Y.; Liang, L.; Liang, H.; Guan, B.-O. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens. Bioelectron. 2021, 179, 113081. [Google Scholar] [CrossRef]
- Gao, S.; Sun, L.-P.; Li, J.; Jin, L.; Ran, Y.; Huang, Y.; Guan, B.-O. High-sensitivity DNA biosensor based on microfiber Sagnac interferometer. Opt. Express 2017, 25, 13305–13313. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Nguyen, L.V.; Zhao, Y.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sens. Actuators B Chem. 2018, 269, 103–109. [Google Scholar] [CrossRef]
- Kong, Y.; Shu, X.; Cao, H.; Deng, J. Thin-Core Fiber Taper-Based Multi-Mode Interferometer for Refractive Index Sensing. IEEE Sens. J. 2018, 18, 8747–8754. [Google Scholar] [CrossRef]
- Lai, Y.-H.; Yang, K.Y.; Suh, M.-G.; Vahala, K.J. Fiber taper characterization by optical backscattering reflectometry. Opt. Express 2017, 25, 22312–22327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Tian, Z.; Sun, L.-P.; Sun, D.; Li, J.; Ran, Y.; Guan, B.-O. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle. Opt. Express 2015, 23, 26962–26968. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photon Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Sun, D.; Sun, L.-P.; Guo, T.; Guan, B.-O. Label-Free Thrombin Detection Using a Tapered Fiber-Optic Interferometric Aptasensor. J. Light. Technol. 2018, 37, 2756–2761. [Google Scholar] [CrossRef]
- Tosi, D. Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications. Sensors 2018, 18, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; Leblanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ning, T.; Li, J.; Pei, L.; Zhang, C.; Zhang, C.; Lin, H.; Wen, X. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating. Opt. Laser Technol. 2017, 90, 179–184. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, T.; Qiu, X.; Tang, J.; Huang, Y.; Zhuang, L.; Zhou, S.; Li, Z.; Guan, B.-O.; Zhang, X.; et al. Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms. Anal. Chem. 2016, 88, 7609–7616. [Google Scholar] [CrossRef]
- Gang, T.T.; Tong, R.X.; Bian, C. A Novel Strain Sensor Using a Fiber Taper Cascaded with an Air Bubble Based on Fabry–Perot Interferometer. IEEE Sens. J. 2021, 21, 4618–4622. [Google Scholar] [CrossRef]
- Gowri, A.; Sai, V. Development of LSPR based U-bent plastic optical fiber sensors. Sens. Actuators B Chem. 2016, 230, 536–543. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Jiang, J.; Liu, K.; Zhang, P.; Wu, W.; Liu, T. High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing. Opt. Express 2019, 27, 4204–4215. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Zhu, W.; Lai, T.; Peng, J.; Lyu, D.; Guo, D.; Yuan, Y.; Lewis, E.; Yang, M. Graphene–Gold–Au@Ag NPs-PDMS Films Coated Fiber Optic for Refractive Index and Temperature Sensing. IEEE Photon-Technol. Lett. 2019, 31, 1205–1208. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Martinez-Pinon, F.; Hernández-Romano, I. Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sens. Actuators B Chem. 2017, 242, 912–920. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, J.; Zhang, X.; Liu, K.; Wang, S.; Liu, T. Simultaneous measurement of refractive index and temperature using a hybrid-grating sensor. Appl. Phys. Express 2019, 12, 116501. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Khonina, S.; Butt, M.; Kaźmierczak, A.; Piramidowicz, R. State-of-the-Art Optical Devices for Biomedical Sensing Applications—A Review. Electron. 2021, 10, 973. [Google Scholar] [CrossRef]
- Tian, P.; Zhu, Z.; Wang, M.; Ye, P.; Yang, J.; Shi, J.; Yang, J.; Guan, C.; Yuan, L. Refractive Index Sensor Based on Fiber Bragg Grating in Hollow Suspended-Core Fiber. IEEE Sens. J. 2019, 19, 11961–11964. [Google Scholar] [CrossRef]
- Urbancova, P.; Pudis, D.; Goraus, M.; Kovac, J. IP-Dip-Based SPR Structure for Refractive Index Sensing of Liquid Ana-lytes. Nanomaterials 2021, 11, 1163. [Google Scholar] [CrossRef]
Fabrication Parameter | Value |
---|---|
Initial fiber diameter (μm) | 125 |
Waist diameter (μm) | 30 |
Left taper length (mm) | 0.5 |
Waist taper length (mm) | 5 |
Right taper length (mm) | 0.5 |
Pre-heat (bit) | 0 |
Absolute power (bit) | 632 |
Relative power (bit) | 100 |
Waist add (bit) | 20 |
Pulling speed (mm/sec) | 0.18 |
Reference | Sensing Method | RI Sensitivity | Temperature Sensitivity | Cross-Sensitivities |
---|---|---|---|---|
Wang et al. [31] | Dual-cavity Fabry–Perot interferometer | 1536 nm/RIU | 80.7 pm/°C | |
Ran et al. [17] | Micro-fiber Bragg grating | 59.56 nm/RIU | 3.56 pm/°C | 10.49 nm/RIU 5.73 pm/°C |
Huang et al. [32] | Graphene-coated modal interferometer | 1591 nm/RIU | 1.02 nm/°C | |
Velázquez-González et al. [33] | SPR modal interferometer | 2323 nm/RIU | 2.85 nm/°C | 0.28 nm/°C |
Pevec et al. [16] | Micromachined Fabry–Perot | 1067 nm/RIU | 9.87 pm/°C | |
Fan et al. [34] | Hybrid grating LPG/TFBG | 606.82 nm/RIU | 268.8 pm/°C | |
Esposito et al. [15] | LPG inscribed in Panda fiber | 12.1 nm/RIU | 79.1 pm/°C | 0.7 nm/RIU 15.5 pm/°C |
Li et al. [27] | Four-core fiber with FBG | 106.2 nm/RIU | 194.6 pm/°C | 9.07 pm/°C ~0 nm/RIU |
This work | Shallow-tapered chirped FBG | 382.8 dB/RIU | 9.89 pm/°C | 568 pm/RIU 1.5 × 10−3 dB/°C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayupova, T.; Shaimerdenova, M.; Tosi, D. Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. Sensors 2021, 21, 3635. https://doi.org/10.3390/s21113635
Ayupova T, Shaimerdenova M, Tosi D. Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. Sensors. 2021; 21(11):3635. https://doi.org/10.3390/s21113635
Chicago/Turabian StyleAyupova, Takhmina, Madina Shaimerdenova, and Daniele Tosi. 2021. "Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing" Sensors 21, no. 11: 3635. https://doi.org/10.3390/s21113635
APA StyleAyupova, T., Shaimerdenova, M., & Tosi, D. (2021). Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. Sensors, 21(11), 3635. https://doi.org/10.3390/s21113635