An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring
<p>Fabrication diagram of all-solid-state ion-selective electrodes (ISEs) with mediate films of ERGO/AuNPs and electrochemically reduced graphene oxide (ERGO). Note: AuNPs are gold nanoparticles.</p> "> Figure 2
<p>Diagram of the soil cylinder: (<b>a</b>) 3-stage design; (<b>b</b>) the drawing of the middle stage.</p> "> Figure 3
<p>The schematic of ISE-based in-situ/laboratory soil NO<sub>3</sub><sup>−</sup>-N detection.</p> "> Figure 4
<p>Morphology and X-ray powder diffraction (XRD) characterization of ERGO, AuNPs, and ERGO/AuNPs. (<b>a</b>) Field-emission scanning electron microscopy (FESEM) image of a layered ERGO modified on the surface of GCE in 10.0 k. (<b>b</b>) FESEM image of a layered AuNPs changed on the surface of GCE in 10.0 k. (<b>c</b>) FESEM image of ERGO/AuNPs modified on the surface of the electrode in 10.0 k. (<b>d</b>) XRD pattern of diffractogram of ERGO/AuNPs composite film.</p> "> Figure 5
<p>ISE Performance comparisons between two tested mediate layers of ERGO/AuNPs and ERGO (<b>a</b>) cyclic voltammetries (CVs); (<b>b</b>) EISs; (<b>c</b>) OCPT; (<b>d</b>) stability; (<b>e</b>) response time; (<b>f</b>) lifetime of the ISE with the composite mediate film (<a href="#app1-sensors-20-02270" class="html-app">Supplementary Materials S2</a>).</p> "> Figure 5 Cont.
<p>ISE Performance comparisons between two tested mediate layers of ERGO/AuNPs and ERGO (<b>a</b>) cyclic voltammetries (CVs); (<b>b</b>) EISs; (<b>c</b>) OCPT; (<b>d</b>) stability; (<b>e</b>) response time; (<b>f</b>) lifetime of the ISE with the composite mediate film (<a href="#app1-sensors-20-02270" class="html-app">Supplementary Materials S2</a>).</p> "> Figure 6
<p>In-situ and laboratory monitoring of soil NO<sub>3</sub><sup>−</sup>-N with the GCE/AuNPs/PPy(NO<sub>3</sub><sup>−</sup>) ISE and UV-VIS (<a href="#app1-sensors-20-02270" class="html-app">Supplementary Materials S2</a>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of the Modified Electrode
2.3. Soil Column and Samplers
2.4. ISE Performance
3. Results and Discussions
3.1. Characterization of ERGO/AuNPs Nanocomposite
3.2. Electrochemical Performance
3.3. Comparison of Soil Percolate Detection and Soil Extract Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- National Stastical Yearbook. 2019. Available online: https://www.chinayearbooks.com (accessed on 4 April 2020).
- Lu, D.; Lu, F.; Pan, J.; Cui, Z.; Zou, C.; Chen, X.; He, M.; Wang, Z. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res. 2015, 171, 157–164. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Li, G.; Shen, J.; Bergström, L.; Zhang, F. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. AMBIO 2015, 44, 274–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, T.E.; Yue, S.; Schulz, R.; He, X.; Chen, X.; Zhang, F.; Müller, T. Yield and N use efficiency of a maize-wheat cropping system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crops Res. 2015, 174, 30–39. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Strokal, M.; Ma, W.; Liu, X.; Kroeze, C. Hotspots for nitrogen and phosphorus losses from food production in china: A county-scale analysis. Environ. Sci. Technol. 2018, 52, 5782–5791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [Google Scholar] [CrossRef]
- Castañeda, A.; Alemán, K.; Castaño, V.M. The Development of a new virtual croplands erosion measurement system using three-dimensional laser scanner and empirical Kostiakov-Lewis models. Opt. Laser Technol. 2019, 117, 316–332. [Google Scholar] [CrossRef]
- Ren, W.; Banger, K.; Tao, B.; Yang, J.; Huang, Y.W.; Tian, H.Q. Global pattern and change of cropland soil organic carbon during 1901–2010: Roles of climate, atmospheric chemistry, land use and management. Geogr. Sustain. 2020. [Google Scholar] [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H. Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures. Land Degrad. Dev. 2015, 27, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. CATENA 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S.A. Recycling sludge on cropland as fertilizer-Advantages and risks, Resources. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Chen, L.; Redmile, M.; Li, J.; Zhang, J.; Xin, X.; Zhang, C.; Ma, D.; Zhou, Y. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes. Appl. Soil Ecol. 2019, 139, 1–9. [Google Scholar] [CrossRef]
- Nielsen, H.J.; Hansen, E.H. New nitrate ion-selective electrodes based on quaternary ammonium compounds in nonporous polymer membranes. Anal. Chim. Acta 1976, 85, 1–16. [Google Scholar] [CrossRef]
- Dahnke, W.C. Use of the nitrate specific ion electrode in soil testing. Soil Sci. Plant Anal. 1971, 2, 73–84. [Google Scholar] [CrossRef]
- Han, X.Z.; Kim, H.J.; Moon, H.C.; Woo, H.J.; Kim, Y.J. Development of a path generation and tracking algorithm for a Korean auto-guidance tillage tractor. J. Biosyst. Eng. 2013, 38, 1–8. [Google Scholar] [CrossRef]
- Sibley, K.J.; Brewster, G.R.; Astatkie, T.; Adsett, J.F.; Struik, P.C. In-Field Measurement of Soil Nitrate Using an Ion-Selective Electrode; IntechOpen: London, UK, 2010. [Google Scholar]
- Joseph, V.S.; Daniel, F.; Oliver, C. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soil. Comput. Electron. Agric. 2010, 70, 1–18. [Google Scholar]
- Li, Y.; Yang, Q.; Chen, M.; Wang, M.; Zhang, M. An ISE-based On-Site Soil Nitrate Nitrogen Detection System. Sensors 2019, 19, 4669. [Google Scholar] [CrossRef] [Green Version]
- Pu, P.; Zhang, M.; Li, Y.; Zhang, L.; Ren, H.; Kong, P.; Linpei, P. Preparation and Evaluation of a Stable Solid State Ion Selective Electrode of Polypyrrole/Electrochemically Reduced Graphene/Glassy Carbon Substrate for Soil Nitrate Sensing. Int. J. Electrochem. Sci. 2016, 11, 4779–4793. [Google Scholar]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; Rooij, N.F.D.; Pretsch, E. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Choosang, J.; Numnuam, A.; Thavarungkul, P.; Kanatharana, P.; Radu, T.; Ullah, S.; Radu, A. Simultaneous Detection of Ammonium and Nitrate in Environmental Samples Using on Ion-Selective Electrode and Comparison with Portable Colorimetric Assays. Sensors 2018, 18, 3555. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.P.P.; Koizumi, R.; Samanta, A.; Machado, L.D.; Ajayan, P.M. One-step electrodeposited 3d-ternary composite of zirconia nanoparticles, RGO and polypyrrole with enhanced supercapacitor performance. Nano Energy 2016, 31, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Umar, M.F.; Nasar, A. Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): Biosensor for the detection of nitrate in wastewater. Appl. Water Sci. 2018, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mao, S.; Li, H.F.; Lin, J.M. Multi-DNAzymes functionalized on gold nanoparticles by rolling circle amplification for highly sensitive detection of thrombin on microchip. Anal. Chim. Acta 2018, 1027, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Yu, S.; Kim, T. One-step electrochemical fabrication of reduced graphene oxide/gold nanoparticles nanocomposite-modified electrode for simultaneous detection of dopamine, ascorbic acid, and uric acid. Nanomaterials 2018, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lv, Z.; Zhou, J.; Fang, Y.; Jiang, M. Amperometric Biosensors Based on Recombinant Bacterial Laccase CotA for Hydroquinone Determination. Electroanalysis 2019, 32, 142–148. [Google Scholar] [CrossRef]
- Wang, B.; Ji, X.; Ren, J.; Ni, R.; Wang, L. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode. Bioelectrochemistry 2017, 118, 75–82. [Google Scholar] [CrossRef]
- German, N.; Ramanavicius, A.; Ramanaviciene, A. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole. Electroanalysis 2017, 29, 1267–1277. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; Xu, B.; Qin, L.; Wei, J.; Yu, Y. Rapid, Localized, and Athermal Shape Memory Performance Triggered by Photoswitchable Glass Transition Temperature. ACS Appl. Mater. Interfaces 2019, 11, 46212–46218. [Google Scholar] [CrossRef]
- Anilanmert, B.; Özdemir, A.A.; Aydin, M.; Akgül, M.; Cengiz, S. A rapid lc-ms/ms method for determination of urinary ETG and application to a cut-off limit study. Chem. Pap. 2015, 69, 1532–1540. [Google Scholar] [CrossRef]
- Yang, Q.; Miao, Z.; Ming, C.; Gang, L.; Maohua, W. All-solid-state Ca2+ Ion-selective Electrode with Black Phosphorus and Reduced Graphene Oxide as the Mediator Layer. Int. J. Electrochem. Sci. 2019, 14, 4933–4945. [Google Scholar] [CrossRef]
- Liangquan, W.; Liang, W.; Zhenling, C.; Xinping, C.; Fusuo, Z.; Resources, C.F. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedol. Sin. 2015, 52, 802–817. [Google Scholar]
- Falcon-Suarez, I.; Rammlmair, D.; Juncosa-Rivera, R.; Delgado-Martin, J. Application of Rhizon SMS for the assessment of the hydrodynamic properties of unconsolidated fine grained materials. Eng. Geol. 2014, 172, 69–76. [Google Scholar] [CrossRef]
- Kabala, C.; Karczewska, A.; Galka, B.; Cuske, M.; Sowiński, J. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups. Environ. Monit. Assess. 2017, 189, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes, Part II. Inorganic Cations (Technical Report). Pure Appl. Chem. 2002, 74, 923–994. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.B.; Erno, L. Recommendations for Nomenclature of Ion-Selective Electrodes. Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar]
- Vinoth, V.; Wu, J.J.; Anandan, S. Sensitive electrochemical determination of dopamine and uric acid using AuNPs(EDAS)–rGO nanocomposites. Anal. Methods 2016, 8, 4379–4390. [Google Scholar] [CrossRef]
No. | Factors | Mass Moisture (%) | Nitrate Nitrogen (mg/L) | Total -N (g/Kg) | Available -P (mg/L) | Available -K (mg/L) | Organic Matter (g/Kg) | |
---|---|---|---|---|---|---|---|---|
1 | Depth/cm | 10 | 19.91 | 61.87 | 6.12 | 5.14 | 12.51 | 10.62 |
2 | 20 | 20.32 | 68.47 | 6.87 | 5.68 | 11.21 | 10.59 | |
3 | 40 | 21.42 | 75.67 | 7.96 | 4.78 | 16.53 | 10.77 | |
4 | 50 | 21.05 | 70.98 | 7.41 | 4.28 | 15.14 | 10.14 | |
5 | 80 | 19.82 | 47.88 | 4.94 | 5.77 | 13.41 | 10.67 | |
6 | 90 | 20.11 | 52.31 | 6.11 | 6.41 | 15.77 | 10.48 | |
7 | Content/u.f. * | +0 | 19.17 | 6.55 | 0.90 | 4.43 | 15.01 | 10.65- |
8 | +0.5 | 20.54 | 59.44 | 7.12 | 3.42 | 16.11 | 10.47 | |
9 | +1 | 21.22 | 79.41 | 8.14 | 3.87 | 16.78 | 10.99 | |
10 | +2 | 19.98 | 116.08 | 13.17 | 3.10 | 15.32 | 11.25 | |
11 | +4 | 20.14 | 172.4 | 16.98 | 3.98 | 16.87 | 10.57 | |
12 | +8 | 20.54 | 245.16 | 24.13 | 3.52 | 15.64 | 10.42 | |
13 | Texture/mm | <0.9 | 21.21 | 51.75 | 5.13–5.94 | 7.12 | 16.21 | 10.55 |
14 | 0.9~2.5 | 20.41 | 55.47 | 5.19 | 8.79 | 16.22 | 10.55 | |
15 | >2.5 | 19.87 | 54.31 | 4.99 | 10.72 | 16.21 | 10.51 | |
16 | Moisture/g/g | 10% | 11.23 | 72.44 | 7.95 | 8.74 | 16.15 | 16.74 |
17 | 15% | 15.11 | 77.64 | 7.69 | 8.74 | 16.12 | 16.77 | |
18 | 20% | 20.54 | 49.59 | 4.84 | 17.78 | 16.41 | 16.14 | |
19 | 25% | 24.67 | 51.20 | 5.23 | 9.14 | 16.74 | 16.62 | |
20 | 30% | 30.87 | 50.24 | 5.12 | 11.24 | 16.59 | 16.48 |
ClO4− | I− | Br− | Cl− | F− | CH3COO− | HCO3− | SO42- | H2PO4− | |
---|---|---|---|---|---|---|---|---|---|
PPy(NO3−) | 1 × 10−1 | 5 × 10−2 | 1.1 × 10−1 | 3 × 10−2 | 1 × 10−2 | 5.2 × 10−4 | 5.5 × 10−4 | 5.9 × 10−4 | 6.4 × 10−5 |
Sample Info. | Detected (mg/L) | Added (mg) | Found (mg/L) | Recovery (%) |
---|---|---|---|---|
No.7-extract | 6.26 ± 0.04 | 0.5 | 21.68 ± 0.39 | 107.91 |
No.9-extract | 80.68 ± 2.23 | 5 | 176.49 ± 1.02 | 95.62 |
No.11-extract | 172.84 ± 3.46 | 5 | 305.01 ± 1.16 | 105.73 |
No. 7-percolate | 25.59 ± 0.16 | 2 | 82.52 ± 2.25 | 99.61 |
No. 5-percolate | 183.72 ± 1.92 | 5 | 288.32 ± 4.02 | 104.6 |
No. 2-percolate | 349.26 ± 4.28 | 5 | 471 ± 4.55 | 97.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zhang, M.; Wang, X.; Yang, Q.; Wang, M.; Liu, G.; Yao, L. An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring. Sensors 2020, 20, 2270. https://doi.org/10.3390/s20082270
Chen M, Zhang M, Wang X, Yang Q, Wang M, Liu G, Yao L. An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring. Sensors. 2020; 20(8):2270. https://doi.org/10.3390/s20082270
Chicago/Turabian StyleChen, Ming, Miao Zhang, Xuming Wang, Qingliang Yang, Maohua Wang, Gang Liu, and Lan Yao. 2020. "An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring" Sensors 20, no. 8: 2270. https://doi.org/10.3390/s20082270